| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > crngringd | GIF version | ||
| Description: A commutative ring is a ring. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| crngringd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Ref | Expression |
|---|---|
| crngringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngringd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 2 | crngring 13845 | . 2 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Ringcrg 13833 CRingccrg 13834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-cring 13836 |
| This theorem is referenced by: crnggrpd 13847 unitmulclb 13951 rdivmuldivd 13981 idomringd 14116 znrrg 14497 lgseisenlem4 15625 |
| Copyright terms: Public domain | W3C validator |