ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitmulclb Unicode version

Theorem unitmulclb 13670
Description: Reversal of unitmulcl 13669 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
unitmulcl.1  |-  U  =  (Unit `  R )
unitmulcl.2  |-  .x.  =  ( .r `  R )
unitmulclb.1  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
unitmulclb  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  <->  ( X  e.  U  /\  Y  e.  U ) ) )

Proof of Theorem unitmulclb
StepHypRef Expression
1 simp1 999 . . . 4  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  CRing )
2 unitmulclb.1 . . . . . . 7  |-  B  =  ( Base `  R
)
32a1i 9 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  B  =  ( Base `  R
) )
4 eqid 2196 . . . . . . 7  |-  ( ||r `  R
)  =  ( ||r `  R
)
54a1i 9 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( ||r `  R )  =  (
||r `  R ) )
61crngringd 13565 . . . . . . 7  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Ring )
7 ringsrg 13603 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
86, 7syl 14 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  R  e. SRing )
9 unitmulcl.2 . . . . . . 7  |-  .x.  =  ( .r `  R )
109a1i 9 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  .x.  =  ( .r `  R ) )
11 simp2 1000 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
12 simp3 1001 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
133, 5, 8, 10, 11, 12dvdsrmuld 13652 . . . . 5  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  X
( ||r `
 R ) ( Y  .x.  X ) )
142, 9crngcom 13570 . . . . 5  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  =  ( Y  .x.  X
) )
1513, 14breqtrrd 4061 . . . 4  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  X
( ||r `
 R ) ( X  .x.  Y ) )
16 unitmulcl.1 . . . . . 6  |-  U  =  (Unit `  R )
1716, 4dvdsunit 13668 . . . . 5  |-  ( ( R  e.  CRing  /\  X
( ||r `
 R ) ( X  .x.  Y )  /\  ( X  .x.  Y )  e.  U
)  ->  X  e.  U )
18173expia 1207 . . . 4  |-  ( ( R  e.  CRing  /\  X
( ||r `
 R ) ( X  .x.  Y ) )  ->  ( ( X  .x.  Y )  e.  U  ->  X  e.  U ) )
191, 15, 18syl2anc 411 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  ->  X  e.  U )
)
203, 5, 8, 10, 12, 11dvdsrmuld 13652 . . . 4  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  Y
( ||r `
 R ) ( X  .x.  Y ) )
2116, 4dvdsunit 13668 . . . . 5  |-  ( ( R  e.  CRing  /\  Y
( ||r `
 R ) ( X  .x.  Y )  /\  ( X  .x.  Y )  e.  U
)  ->  Y  e.  U )
22213expia 1207 . . . 4  |-  ( ( R  e.  CRing  /\  Y
( ||r `
 R ) ( X  .x.  Y ) )  ->  ( ( X  .x.  Y )  e.  U  ->  Y  e.  U ) )
231, 20, 22syl2anc 411 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  ->  Y  e.  U )
)
2419, 23jcad 307 . 2  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  -> 
( X  e.  U  /\  Y  e.  U
) ) )
25 crngring 13564 . . . 4  |-  ( R  e.  CRing  ->  R  e.  Ring )
26253ad2ant1 1020 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Ring )
2716, 9unitmulcl 13669 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  U )
28273expib 1208 . . 3  |-  ( R  e.  Ring  ->  ( ( X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y
)  e.  U ) )
2926, 28syl 14 . 2  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  e.  U  /\  Y  e.  U
)  ->  ( X  .x.  Y )  e.  U
) )
3024, 29impbid 129 1  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  <->  ( X  e.  U  /\  Y  e.  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   Basecbs 12678   .rcmulr 12756  SRingcsrg 13519   Ringcrg 13552   CRingccrg 13553   ||rcdsr 13642  Unitcui 13643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-cring 13555  df-oppr 13624  df-dvdsr 13645  df-unit 13646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator