| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitmulclb | Unicode version | ||
| Description: Reversal of unitmulcl 13950 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| Ref | Expression |
|---|---|
| unitmulcl.1 |
|
| unitmulcl.2 |
|
| unitmulclb.1 |
|
| Ref | Expression |
|---|---|
| unitmulclb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . . 4
| |
| 2 | unitmulclb.1 |
. . . . . . 7
| |
| 3 | 2 | a1i 9 |
. . . . . 6
|
| 4 | eqid 2206 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | 1 | crngringd 13846 |
. . . . . . 7
|
| 7 | ringsrg 13884 |
. . . . . . 7
| |
| 8 | 6, 7 | syl 14 |
. . . . . 6
|
| 9 | unitmulcl.2 |
. . . . . . 7
| |
| 10 | 9 | a1i 9 |
. . . . . 6
|
| 11 | simp2 1001 |
. . . . . 6
| |
| 12 | simp3 1002 |
. . . . . 6
| |
| 13 | 3, 5, 8, 10, 11, 12 | dvdsrmuld 13933 |
. . . . 5
|
| 14 | 2, 9 | crngcom 13851 |
. . . . 5
|
| 15 | 13, 14 | breqtrrd 4079 |
. . . 4
|
| 16 | unitmulcl.1 |
. . . . . 6
| |
| 17 | 16, 4 | dvdsunit 13949 |
. . . . 5
|
| 18 | 17 | 3expia 1208 |
. . . 4
|
| 19 | 1, 15, 18 | syl2anc 411 |
. . 3
|
| 20 | 3, 5, 8, 10, 12, 11 | dvdsrmuld 13933 |
. . . 4
|
| 21 | 16, 4 | dvdsunit 13949 |
. . . . 5
|
| 22 | 21 | 3expia 1208 |
. . . 4
|
| 23 | 1, 20, 22 | syl2anc 411 |
. . 3
|
| 24 | 19, 23 | jcad 307 |
. 2
|
| 25 | crngring 13845 |
. . . 4
| |
| 26 | 25 | 3ad2ant1 1021 |
. . 3
|
| 27 | 16, 9 | unitmulcl 13950 |
. . . 4
|
| 28 | 27 | 3expib 1209 |
. . 3
|
| 29 | 26, 28 | syl 14 |
. 2
|
| 30 | 24, 29 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-tpos 6344 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-plusg 12997 df-mulr 12998 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-cmn 13697 df-abl 13698 df-mgp 13758 df-ur 13797 df-srg 13801 df-ring 13835 df-cring 13836 df-oppr 13905 df-dvdsr 13926 df-unit 13927 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |