| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitmulclb | Unicode version | ||
| Description: Reversal of unitmulcl 13793 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| Ref | Expression |
|---|---|
| unitmulcl.1 |
|
| unitmulcl.2 |
|
| unitmulclb.1 |
|
| Ref | Expression |
|---|---|
| unitmulclb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 |
. . . 4
| |
| 2 | unitmulclb.1 |
. . . . . . 7
| |
| 3 | 2 | a1i 9 |
. . . . . 6
|
| 4 | eqid 2204 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | 1 | crngringd 13689 |
. . . . . . 7
|
| 7 | ringsrg 13727 |
. . . . . . 7
| |
| 8 | 6, 7 | syl 14 |
. . . . . 6
|
| 9 | unitmulcl.2 |
. . . . . . 7
| |
| 10 | 9 | a1i 9 |
. . . . . 6
|
| 11 | simp2 1000 |
. . . . . 6
| |
| 12 | simp3 1001 |
. . . . . 6
| |
| 13 | 3, 5, 8, 10, 11, 12 | dvdsrmuld 13776 |
. . . . 5
|
| 14 | 2, 9 | crngcom 13694 |
. . . . 5
|
| 15 | 13, 14 | breqtrrd 4071 |
. . . 4
|
| 16 | unitmulcl.1 |
. . . . . 6
| |
| 17 | 16, 4 | dvdsunit 13792 |
. . . . 5
|
| 18 | 17 | 3expia 1207 |
. . . 4
|
| 19 | 1, 15, 18 | syl2anc 411 |
. . 3
|
| 20 | 3, 5, 8, 10, 12, 11 | dvdsrmuld 13776 |
. . . 4
|
| 21 | 16, 4 | dvdsunit 13792 |
. . . . 5
|
| 22 | 21 | 3expia 1207 |
. . . 4
|
| 23 | 1, 20, 22 | syl2anc 411 |
. . 3
|
| 24 | 19, 23 | jcad 307 |
. 2
|
| 25 | crngring 13688 |
. . . 4
| |
| 26 | 25 | 3ad2ant1 1020 |
. . 3
|
| 27 | 16, 9 | unitmulcl 13793 |
. . . 4
|
| 28 | 27 | 3expib 1208 |
. . 3
|
| 29 | 26, 28 | syl 14 |
. 2
|
| 30 | 24, 29 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-tpos 6321 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-3 9078 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-plusg 12841 df-mulr 12842 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 df-minusg 13254 df-cmn 13540 df-abl 13541 df-mgp 13601 df-ur 13640 df-srg 13644 df-ring 13678 df-cring 13679 df-oppr 13748 df-dvdsr 13769 df-unit 13770 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |