ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitmulclb Unicode version

Theorem unitmulclb 13357
Description: Reversal of unitmulcl 13356 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
unitmulcl.1  |-  U  =  (Unit `  R )
unitmulcl.2  |-  .x.  =  ( .r `  R )
unitmulclb.1  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
unitmulclb  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  <->  ( X  e.  U  /\  Y  e.  U ) ) )

Proof of Theorem unitmulclb
StepHypRef Expression
1 simp1 998 . . . 4  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  CRing )
2 unitmulclb.1 . . . . . . 7  |-  B  =  ( Base `  R
)
32a1i 9 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  B  =  ( Base `  R
) )
4 eqid 2187 . . . . . . 7  |-  ( ||r `  R
)  =  ( ||r `  R
)
54a1i 9 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( ||r `  R )  =  (
||r `  R ) )
61crngringd 13256 . . . . . . 7  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Ring )
7 ringsrg 13292 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
86, 7syl 14 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  R  e. SRing )
9 unitmulcl.2 . . . . . . 7  |-  .x.  =  ( .r `  R )
109a1i 9 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  .x.  =  ( .r `  R ) )
11 simp2 999 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
12 simp3 1000 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
133, 5, 8, 10, 11, 12dvdsrmuld 13339 . . . . 5  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  X
( ||r `
 R ) ( Y  .x.  X ) )
142, 9crngcom 13261 . . . . 5  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  =  ( Y  .x.  X
) )
1513, 14breqtrrd 4043 . . . 4  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  X
( ||r `
 R ) ( X  .x.  Y ) )
16 unitmulcl.1 . . . . . 6  |-  U  =  (Unit `  R )
1716, 4dvdsunit 13355 . . . . 5  |-  ( ( R  e.  CRing  /\  X
( ||r `
 R ) ( X  .x.  Y )  /\  ( X  .x.  Y )  e.  U
)  ->  X  e.  U )
18173expia 1206 . . . 4  |-  ( ( R  e.  CRing  /\  X
( ||r `
 R ) ( X  .x.  Y ) )  ->  ( ( X  .x.  Y )  e.  U  ->  X  e.  U ) )
191, 15, 18syl2anc 411 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  ->  X  e.  U )
)
203, 5, 8, 10, 12, 11dvdsrmuld 13339 . . . 4  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  Y
( ||r `
 R ) ( X  .x.  Y ) )
2116, 4dvdsunit 13355 . . . . 5  |-  ( ( R  e.  CRing  /\  Y
( ||r `
 R ) ( X  .x.  Y )  /\  ( X  .x.  Y )  e.  U
)  ->  Y  e.  U )
22213expia 1206 . . . 4  |-  ( ( R  e.  CRing  /\  Y
( ||r `
 R ) ( X  .x.  Y ) )  ->  ( ( X  .x.  Y )  e.  U  ->  Y  e.  U ) )
231, 20, 22syl2anc 411 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  ->  Y  e.  U )
)
2419, 23jcad 307 . 2  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  -> 
( X  e.  U  /\  Y  e.  U
) ) )
25 crngring 13255 . . . 4  |-  ( R  e.  CRing  ->  R  e.  Ring )
26253ad2ant1 1019 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Ring )
2716, 9unitmulcl 13356 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  U )
28273expib 1207 . . 3  |-  ( R  e.  Ring  ->  ( ( X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y
)  e.  U ) )
2926, 28syl 14 . 2  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  e.  U  /\  Y  e.  U
)  ->  ( X  .x.  Y )  e.  U
) )
3024, 29impbid 129 1  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  <->  ( X  e.  U  /\  Y  e.  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   Basecbs 12475   .rcmulr 12551  SRingcsrg 13210   Ringcrg 13243   CRingccrg 13244   ||rcdsr 13329  Unitcui 13330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-pre-ltirr 7936  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-tpos 6259  df-pnf 8007  df-mnf 8008  df-ltxr 8010  df-inn 8933  df-2 8991  df-3 8992  df-ndx 12478  df-slot 12479  df-base 12481  df-sets 12482  df-plusg 12563  df-mulr 12564  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12839  df-grp 12901  df-minusg 12902  df-cmn 13122  df-abl 13123  df-mgp 13171  df-ur 13207  df-srg 13211  df-ring 13245  df-cring 13246  df-oppr 13311  df-dvdsr 13332  df-unit 13333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator