ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdivmuldivd Unicode version

Theorem rdivmuldivd 13461
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
dvrdir.b  |-  B  =  ( Base `  R
)
dvrdir.u  |-  U  =  (Unit `  R )
dvrdir.p  |-  .+  =  ( +g  `  R )
dvrdir.t  |-  ./  =  (/r
`  R )
rdivmuldivd.p  |-  .x.  =  ( .r `  R )
rdivmuldivd.r  |-  ( ph  ->  R  e.  CRing )
rdivmuldivd.a  |-  ( ph  ->  X  e.  B )
rdivmuldivd.b  |-  ( ph  ->  Y  e.  U )
rdivmuldivd.c  |-  ( ph  ->  Z  e.  B )
rdivmuldivd.d  |-  ( ph  ->  W  e.  U )
Assertion
Ref Expression
rdivmuldivd  |-  ( ph  ->  ( ( X  ./  Y )  .x.  ( Z  ./  W ) )  =  ( ( X 
.x.  Z )  ./  ( Y  .x.  W ) ) )

Proof of Theorem rdivmuldivd
StepHypRef Expression
1 dvrdir.b . . . . . 6  |-  B  =  ( Base `  R
)
21a1i 9 . . . . 5  |-  ( ph  ->  B  =  ( Base `  R ) )
3 rdivmuldivd.p . . . . . 6  |-  .x.  =  ( .r `  R )
43a1i 9 . . . . 5  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
5 dvrdir.u . . . . . 6  |-  U  =  (Unit `  R )
65a1i 9 . . . . 5  |-  ( ph  ->  U  =  (Unit `  R ) )
7 eqidd 2190 . . . . 5  |-  ( ph  ->  ( invr `  R
)  =  ( invr `  R ) )
8 dvrdir.t . . . . . 6  |-  ./  =  (/r
`  R )
98a1i 9 . . . . 5  |-  ( ph  -> 
./  =  (/r `  R
) )
10 rdivmuldivd.r . . . . . 6  |-  ( ph  ->  R  e.  CRing )
1110crngringd 13330 . . . . 5  |-  ( ph  ->  R  e.  Ring )
12 rdivmuldivd.a . . . . 5  |-  ( ph  ->  X  e.  B )
13 rdivmuldivd.b . . . . 5  |-  ( ph  ->  Y  e.  U )
142, 4, 6, 7, 9, 11, 12, 13dvrvald 13451 . . . 4  |-  ( ph  ->  ( X  ./  Y
)  =  ( X 
.x.  ( ( invr `  R ) `  Y
) ) )
1514oveq1d 5906 . . 3  |-  ( ph  ->  ( ( X  ./  Y )  .x.  ( Z  ./  W ) )  =  ( ( X 
.x.  ( ( invr `  R ) `  Y
) )  .x.  ( Z  ./  W ) ) )
16 ringsrg 13366 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
1711, 16syl 14 . . . . . 6  |-  ( ph  ->  R  e. SRing )
182, 6, 17unitssd 13426 . . . . 5  |-  ( ph  ->  U  C_  B )
19 eqid 2189 . . . . . . 7  |-  ( invr `  R )  =  (
invr `  R )
205, 19unitinvcl 13440 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  U )  ->  (
( invr `  R ) `  Y )  e.  U
)
2111, 13, 20syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( invr `  R
) `  Y )  e.  U )
2218, 21sseldd 3171 . . . 4  |-  ( ph  ->  ( ( invr `  R
) `  Y )  e.  B )
23 rdivmuldivd.c . . . . 5  |-  ( ph  ->  Z  e.  B )
24 rdivmuldivd.d . . . . 5  |-  ( ph  ->  W  e.  U )
251, 5, 8dvrcl 13452 . . . . 5  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  W  e.  U )  ->  ( Z  ./  W )  e.  B )
2611, 23, 24, 25syl3anc 1249 . . . 4  |-  ( ph  ->  ( Z  ./  W
)  e.  B )
271, 3ringass 13337 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  ( ( invr `  R
) `  Y )  e.  B  /\  ( Z  ./  W )  e.  B ) )  -> 
( ( X  .x.  ( ( invr `  R
) `  Y )
)  .x.  ( Z  ./  W ) )  =  ( X  .x.  (
( ( invr `  R
) `  Y )  .x.  ( Z  ./  W
) ) ) )
2811, 12, 22, 26, 27syl13anc 1251 . . 3  |-  ( ph  ->  ( ( X  .x.  ( ( invr `  R
) `  Y )
)  .x.  ( Z  ./  W ) )  =  ( X  .x.  (
( ( invr `  R
) `  Y )  .x.  ( Z  ./  W
) ) ) )
291, 3crngcom 13335 . . . . 5  |-  ( ( R  e.  CRing  /\  (
( invr `  R ) `  Y )  e.  B  /\  ( Z  ./  W
)  e.  B )  ->  ( ( (
invr `  R ) `  Y )  .x.  ( Z  ./  W ) )  =  ( ( Z 
./  W )  .x.  ( ( invr `  R
) `  Y )
) )
3010, 22, 26, 29syl3anc 1249 . . . 4  |-  ( ph  ->  ( ( ( invr `  R ) `  Y
)  .x.  ( Z  ./  W ) )  =  ( ( Z  ./  W )  .x.  (
( invr `  R ) `  Y ) ) )
3130oveq2d 5907 . . 3  |-  ( ph  ->  ( X  .x.  (
( ( invr `  R
) `  Y )  .x.  ( Z  ./  W
) ) )  =  ( X  .x.  (
( Z  ./  W
)  .x.  ( ( invr `  R ) `  Y ) ) ) )
3215, 28, 313eqtrd 2226 . 2  |-  ( ph  ->  ( ( X  ./  Y )  .x.  ( Z  ./  W ) )  =  ( X  .x.  ( ( Z  ./  W )  .x.  (
( invr `  R ) `  Y ) ) ) )
33 eqid 2189 . . . . . . . . 9  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
345, 33unitgrp 13433 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
3511, 34syl 14 . . . . . . 7  |-  ( ph  ->  ( (mulGrp `  R
)s 
U )  e.  Grp )
36 eqidd 2190 . . . . . . . . 9  |-  ( ph  ->  ( (mulGrp `  R
)s 
U )  =  ( (mulGrp `  R )s  U
) )
376, 36, 17unitgrpbasd 13432 . . . . . . . 8  |-  ( ph  ->  U  =  ( Base `  ( (mulGrp `  R
)s 
U ) ) )
3813, 37eleqtrd 2268 . . . . . . 7  |-  ( ph  ->  Y  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )
3924, 37eleqtrd 2268 . . . . . . 7  |-  ( ph  ->  W  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )
40 eqid 2189 . . . . . . . 8  |-  ( Base `  ( (mulGrp `  R
)s 
U ) )  =  ( Base `  (
(mulGrp `  R )s  U
) )
41 eqid 2189 . . . . . . . 8  |-  ( +g  `  ( (mulGrp `  R
)s 
U ) )  =  ( +g  `  (
(mulGrp `  R )s  U
) )
42 eqid 2189 . . . . . . . 8  |-  ( invg `  ( (mulGrp `  R )s  U ) )  =  ( invg `  ( (mulGrp `  R )s  U
) )
4340, 41, 42grpinvadd 12994 . . . . . . 7  |-  ( ( ( (mulGrp `  R
)s 
U )  e.  Grp  /\  Y  e.  ( Base `  ( (mulGrp `  R
)s 
U ) )  /\  W  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )  ->  ( ( invg `  ( (mulGrp `  R )s  U ) ) `  ( Y ( +g  `  (
(mulGrp `  R )s  U
) ) W ) )  =  ( ( ( invg `  ( (mulGrp `  R )s  U
) ) `  W
) ( +g  `  (
(mulGrp `  R )s  U
) ) ( ( invg `  (
(mulGrp `  R )s  U
) ) `  Y
) ) )
4435, 38, 39, 43syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  ( Y ( +g  `  (
(mulGrp `  R )s  U
) ) W ) )  =  ( ( ( invg `  ( (mulGrp `  R )s  U
) ) `  W
) ( +g  `  (
(mulGrp `  R )s  U
) ) ( ( invg `  (
(mulGrp `  R )s  U
) ) `  Y
) ) )
456, 36, 7, 11invrfvald 13439 . . . . . . 7  |-  ( ph  ->  ( invr `  R
)  =  ( invg `  ( (mulGrp `  R )s  U ) ) )
4645fveq1d 5532 . . . . . 6  |-  ( ph  ->  ( ( invr `  R
) `  ( Y
( +g  `  ( (mulGrp `  R )s  U ) ) W ) )  =  ( ( invg `  ( (mulGrp `  R )s  U
) ) `  ( Y ( +g  `  (
(mulGrp `  R )s  U
) ) W ) ) )
4745fveq1d 5532 . . . . . . 7  |-  ( ph  ->  ( ( invr `  R
) `  W )  =  ( ( invg `  ( (mulGrp `  R )s  U ) ) `  W ) )
4845fveq1d 5532 . . . . . . 7  |-  ( ph  ->  ( ( invr `  R
) `  Y )  =  ( ( invg `  ( (mulGrp `  R )s  U ) ) `  Y ) )
4947, 48oveq12d 5909 . . . . . 6  |-  ( ph  ->  ( ( ( invr `  R ) `  W
) ( +g  `  (
(mulGrp `  R )s  U
) ) ( (
invr `  R ) `  Y ) )  =  ( ( ( invg `  ( (mulGrp `  R )s  U ) ) `  W ) ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  Y
) ) )
5044, 46, 493eqtr4d 2232 . . . . 5  |-  ( ph  ->  ( ( invr `  R
) `  ( Y
( +g  `  ( (mulGrp `  R )s  U ) ) W ) )  =  ( ( ( invr `  R
) `  W )
( +g  `  ( (mulGrp `  R )s  U ) ) ( ( invr `  R
) `  Y )
) )
51 basfn 12544 . . . . . . . . . . . 12  |-  Base  Fn  _V
5210elexd 2765 . . . . . . . . . . . 12  |-  ( ph  ->  R  e.  _V )
53 funfvex 5547 . . . . . . . . . . . . 13  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
5453funfni 5331 . . . . . . . . . . . 12  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
5551, 52, 54sylancr 414 . . . . . . . . . . 11  |-  ( ph  ->  ( Base `  R
)  e.  _V )
561, 55eqeltrid 2276 . . . . . . . . . 10  |-  ( ph  ->  B  e.  _V )
5756, 18ssexd 4158 . . . . . . . . 9  |-  ( ph  ->  U  e.  _V )
58 ressex 12549 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  U  e.  _V )  ->  ( Rs  U )  e.  _V )
59 eqid 2189 . . . . . . . . . . 11  |-  (mulGrp `  ( Rs  U ) )  =  (mulGrp `  ( Rs  U
) )
60 eqid 2189 . . . . . . . . . . 11  |-  ( .r
`  ( Rs  U ) )  =  ( .r
`  ( Rs  U ) )
6159, 60mgpplusgg 13245 . . . . . . . . . 10  |-  ( ( Rs  U )  e.  _V  ->  ( .r `  ( Rs  U ) )  =  ( +g  `  (mulGrp `  ( Rs  U ) ) ) )
6258, 61syl 14 . . . . . . . . 9  |-  ( ( R  e.  CRing  /\  U  e.  _V )  ->  ( .r `  ( Rs  U ) )  =  ( +g  `  (mulGrp `  ( Rs  U
) ) ) )
6310, 57, 62syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( .r `  ( Rs  U ) )  =  ( +g  `  (mulGrp `  ( Rs  U ) ) ) )
64 eqid 2189 . . . . . . . . . 10  |-  ( Rs  U )  =  ( Rs  U )
6564, 3ressmulrg 12628 . . . . . . . . 9  |-  ( ( U  e.  _V  /\  R  e.  CRing )  ->  .x.  =  ( .r `  ( Rs  U ) ) )
6657, 10, 65syl2anc 411 . . . . . . . 8  |-  ( ph  ->  .x.  =  ( .r
`  ( Rs  U ) ) )
67 eqid 2189 . . . . . . . . . . 11  |-  (mulGrp `  R )  =  (mulGrp `  R )
6864, 67mgpress 13252 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  U  e.  _V )  ->  (
(mulGrp `  R )s  U
)  =  (mulGrp `  ( Rs  U ) ) )
6911, 57, 68syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( (mulGrp `  R
)s 
U )  =  (mulGrp `  ( Rs  U ) ) )
7069fveq2d 5534 . . . . . . . 8  |-  ( ph  ->  ( +g  `  (
(mulGrp `  R )s  U
) )  =  ( +g  `  (mulGrp `  ( Rs  U ) ) ) )
7163, 66, 703eqtr4d 2232 . . . . . . 7  |-  ( ph  ->  .x.  =  ( +g  `  ( (mulGrp `  R
)s 
U ) ) )
7271oveqd 5908 . . . . . 6  |-  ( ph  ->  ( Y  .x.  W
)  =  ( Y ( +g  `  (
(mulGrp `  R )s  U
) ) W ) )
7372fveq2d 5534 . . . . 5  |-  ( ph  ->  ( ( invr `  R
) `  ( Y  .x.  W ) )  =  ( ( invr `  R
) `  ( Y
( +g  `  ( (mulGrp `  R )s  U ) ) W ) ) )
7471oveqd 5908 . . . . 5  |-  ( ph  ->  ( ( ( invr `  R ) `  W
)  .x.  ( ( invr `  R ) `  Y ) )  =  ( ( ( invr `  R ) `  W
) ( +g  `  (
(mulGrp `  R )s  U
) ) ( (
invr `  R ) `  Y ) ) )
7550, 73, 743eqtr4d 2232 . . . 4  |-  ( ph  ->  ( ( invr `  R
) `  ( Y  .x.  W ) )  =  ( ( ( invr `  R ) `  W
)  .x.  ( ( invr `  R ) `  Y ) ) )
7675oveq2d 5907 . . 3  |-  ( ph  ->  ( ( X  .x.  Z )  .x.  (
( invr `  R ) `  ( Y  .x.  W
) ) )  =  ( ( X  .x.  Z )  .x.  (
( ( invr `  R
) `  W )  .x.  ( ( invr `  R
) `  Y )
) ) )
771, 3ringcl 13334 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
7811, 12, 23, 77syl3anc 1249 . . . 4  |-  ( ph  ->  ( X  .x.  Z
)  e.  B )
795, 3unitmulcl 13430 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  U  /\  W  e.  U )  ->  ( Y  .x.  W )  e.  U )
8011, 13, 24, 79syl3anc 1249 . . . 4  |-  ( ph  ->  ( Y  .x.  W
)  e.  U )
812, 4, 6, 7, 9, 11, 78, 80dvrvald 13451 . . 3  |-  ( ph  ->  ( ( X  .x.  Z )  ./  ( Y  .x.  W ) )  =  ( ( X 
.x.  Z )  .x.  ( ( invr `  R
) `  ( Y  .x.  W ) ) ) )
825, 19unitinvcl 13440 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  W  e.  U )  ->  (
( invr `  R ) `  W )  e.  U
)
8311, 24, 82syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( invr `  R
) `  W )  e.  U )
8418, 83sseldd 3171 . . . . . . 7  |-  ( ph  ->  ( ( invr `  R
) `  W )  e.  B )
851, 3ringass 13337 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Z  e.  B  /\  ( ( invr `  R
) `  W )  e.  B ) )  -> 
( ( X  .x.  Z )  .x.  (
( invr `  R ) `  W ) )  =  ( X  .x.  ( Z  .x.  ( ( invr `  R ) `  W
) ) ) )
8611, 12, 23, 84, 85syl13anc 1251 . . . . . 6  |-  ( ph  ->  ( ( X  .x.  Z )  .x.  (
( invr `  R ) `  W ) )  =  ( X  .x.  ( Z  .x.  ( ( invr `  R ) `  W
) ) ) )
872, 4, 6, 7, 9, 11, 23, 24dvrvald 13451 . . . . . . 7  |-  ( ph  ->  ( Z  ./  W
)  =  ( Z 
.x.  ( ( invr `  R ) `  W
) ) )
8887oveq2d 5907 . . . . . 6  |-  ( ph  ->  ( X  .x.  ( Z  ./  W ) )  =  ( X  .x.  ( Z  .x.  ( (
invr `  R ) `  W ) ) ) )
8986, 88eqtr4d 2225 . . . . 5  |-  ( ph  ->  ( ( X  .x.  Z )  .x.  (
( invr `  R ) `  W ) )  =  ( X  .x.  ( Z  ./  W ) ) )
9089oveq1d 5906 . . . 4  |-  ( ph  ->  ( ( ( X 
.x.  Z )  .x.  ( ( invr `  R
) `  W )
)  .x.  ( ( invr `  R ) `  Y ) )  =  ( ( X  .x.  ( Z  ./  W ) )  .x.  ( (
invr `  R ) `  Y ) ) )
911, 3ringass 13337 . . . . 5  |-  ( ( R  e.  Ring  /\  (
( X  .x.  Z
)  e.  B  /\  ( ( invr `  R
) `  W )  e.  B  /\  (
( invr `  R ) `  Y )  e.  B
) )  ->  (
( ( X  .x.  Z )  .x.  (
( invr `  R ) `  W ) )  .x.  ( ( invr `  R
) `  Y )
)  =  ( ( X  .x.  Z ) 
.x.  ( ( (
invr `  R ) `  W )  .x.  (
( invr `  R ) `  Y ) ) ) )
9211, 78, 84, 22, 91syl13anc 1251 . . . 4  |-  ( ph  ->  ( ( ( X 
.x.  Z )  .x.  ( ( invr `  R
) `  W )
)  .x.  ( ( invr `  R ) `  Y ) )  =  ( ( X  .x.  Z )  .x.  (
( ( invr `  R
) `  W )  .x.  ( ( invr `  R
) `  Y )
) ) )
931, 3ringass 13337 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  ( Z  ./  W )  e.  B  /\  (
( invr `  R ) `  Y )  e.  B
) )  ->  (
( X  .x.  ( Z  ./  W ) ) 
.x.  ( ( invr `  R ) `  Y
) )  =  ( X  .x.  ( ( Z  ./  W )  .x.  ( ( invr `  R
) `  Y )
) ) )
9411, 12, 26, 22, 93syl13anc 1251 . . . 4  |-  ( ph  ->  ( ( X  .x.  ( Z  ./  W ) )  .x.  ( (
invr `  R ) `  Y ) )  =  ( X  .x.  (
( Z  ./  W
)  .x.  ( ( invr `  R ) `  Y ) ) ) )
9590, 92, 943eqtr3rd 2231 . . 3  |-  ( ph  ->  ( X  .x.  (
( Z  ./  W
)  .x.  ( ( invr `  R ) `  Y ) ) )  =  ( ( X 
.x.  Z )  .x.  ( ( ( invr `  R ) `  W
)  .x.  ( ( invr `  R ) `  Y ) ) ) )
9676, 81, 953eqtr4rd 2233 . 2  |-  ( ph  ->  ( X  .x.  (
( Z  ./  W
)  .x.  ( ( invr `  R ) `  Y ) ) )  =  ( ( X 
.x.  Z )  ./  ( Y  .x.  W ) ) )
9732, 96eqtrd 2222 1  |-  ( ph  ->  ( ( X  ./  Y )  .x.  ( Z  ./  W ) )  =  ( ( X 
.x.  Z )  ./  ( Y  .x.  W ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   _Vcvv 2752    Fn wfn 5226   ` cfv 5231  (class class class)co 5891   Basecbs 12486   ↾s cress 12487   +g cplusg 12561   .rcmulr 12562   Grpcgrp 12917   invgcminusg 12918  mulGrpcmgp 13241  SRingcsrg 13284   Ringcrg 13317   CRingccrg 13318  Unitcui 13404   invrcinvr 13437  /rcdvr 13448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-addcom 7930  ax-addass 7932  ax-i2m1 7935  ax-0lt1 7936  ax-0id 7938  ax-rnegex 7939  ax-pre-ltirr 7942  ax-pre-lttrn 7944  ax-pre-ltadd 7946
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-tpos 6264  df-pnf 8013  df-mnf 8014  df-ltxr 8016  df-inn 8939  df-2 8997  df-3 8998  df-ndx 12489  df-slot 12490  df-base 12492  df-sets 12493  df-iress 12494  df-plusg 12574  df-mulr 12575  df-0g 12735  df-mgm 12804  df-sgrp 12837  df-mnd 12850  df-grp 12920  df-minusg 12921  df-cmn 13192  df-abl 13193  df-mgp 13242  df-ur 13281  df-srg 13285  df-ring 13319  df-cring 13320  df-oppr 13385  df-dvdsr 13406  df-unit 13407  df-invr 13438  df-dvr 13449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator