ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdivmuldivd Unicode version

Theorem rdivmuldivd 13906
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
dvrdir.b  |-  B  =  ( Base `  R
)
dvrdir.u  |-  U  =  (Unit `  R )
dvrdir.p  |-  .+  =  ( +g  `  R )
dvrdir.t  |-  ./  =  (/r
`  R )
rdivmuldivd.p  |-  .x.  =  ( .r `  R )
rdivmuldivd.r  |-  ( ph  ->  R  e.  CRing )
rdivmuldivd.a  |-  ( ph  ->  X  e.  B )
rdivmuldivd.b  |-  ( ph  ->  Y  e.  U )
rdivmuldivd.c  |-  ( ph  ->  Z  e.  B )
rdivmuldivd.d  |-  ( ph  ->  W  e.  U )
Assertion
Ref Expression
rdivmuldivd  |-  ( ph  ->  ( ( X  ./  Y )  .x.  ( Z  ./  W ) )  =  ( ( X 
.x.  Z )  ./  ( Y  .x.  W ) ) )

Proof of Theorem rdivmuldivd
StepHypRef Expression
1 dvrdir.b . . . . . 6  |-  B  =  ( Base `  R
)
21a1i 9 . . . . 5  |-  ( ph  ->  B  =  ( Base `  R ) )
3 rdivmuldivd.p . . . . . 6  |-  .x.  =  ( .r `  R )
43a1i 9 . . . . 5  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
5 dvrdir.u . . . . . 6  |-  U  =  (Unit `  R )
65a1i 9 . . . . 5  |-  ( ph  ->  U  =  (Unit `  R ) )
7 eqidd 2206 . . . . 5  |-  ( ph  ->  ( invr `  R
)  =  ( invr `  R ) )
8 dvrdir.t . . . . . 6  |-  ./  =  (/r
`  R )
98a1i 9 . . . . 5  |-  ( ph  -> 
./  =  (/r `  R
) )
10 rdivmuldivd.r . . . . . 6  |-  ( ph  ->  R  e.  CRing )
1110crngringd 13771 . . . . 5  |-  ( ph  ->  R  e.  Ring )
12 rdivmuldivd.a . . . . 5  |-  ( ph  ->  X  e.  B )
13 rdivmuldivd.b . . . . 5  |-  ( ph  ->  Y  e.  U )
142, 4, 6, 7, 9, 11, 12, 13dvrvald 13896 . . . 4  |-  ( ph  ->  ( X  ./  Y
)  =  ( X 
.x.  ( ( invr `  R ) `  Y
) ) )
1514oveq1d 5959 . . 3  |-  ( ph  ->  ( ( X  ./  Y )  .x.  ( Z  ./  W ) )  =  ( ( X 
.x.  ( ( invr `  R ) `  Y
) )  .x.  ( Z  ./  W ) ) )
16 ringsrg 13809 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
1711, 16syl 14 . . . . . 6  |-  ( ph  ->  R  e. SRing )
182, 6, 17unitssd 13871 . . . . 5  |-  ( ph  ->  U  C_  B )
19 eqid 2205 . . . . . . 7  |-  ( invr `  R )  =  (
invr `  R )
205, 19unitinvcl 13885 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  U )  ->  (
( invr `  R ) `  Y )  e.  U
)
2111, 13, 20syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( invr `  R
) `  Y )  e.  U )
2218, 21sseldd 3194 . . . 4  |-  ( ph  ->  ( ( invr `  R
) `  Y )  e.  B )
23 rdivmuldivd.c . . . . 5  |-  ( ph  ->  Z  e.  B )
24 rdivmuldivd.d . . . . 5  |-  ( ph  ->  W  e.  U )
251, 5, 8dvrcl 13897 . . . . 5  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  W  e.  U )  ->  ( Z  ./  W )  e.  B )
2611, 23, 24, 25syl3anc 1250 . . . 4  |-  ( ph  ->  ( Z  ./  W
)  e.  B )
271, 3ringass 13778 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  ( ( invr `  R
) `  Y )  e.  B  /\  ( Z  ./  W )  e.  B ) )  -> 
( ( X  .x.  ( ( invr `  R
) `  Y )
)  .x.  ( Z  ./  W ) )  =  ( X  .x.  (
( ( invr `  R
) `  Y )  .x.  ( Z  ./  W
) ) ) )
2811, 12, 22, 26, 27syl13anc 1252 . . 3  |-  ( ph  ->  ( ( X  .x.  ( ( invr `  R
) `  Y )
)  .x.  ( Z  ./  W ) )  =  ( X  .x.  (
( ( invr `  R
) `  Y )  .x.  ( Z  ./  W
) ) ) )
291, 3crngcom 13776 . . . . 5  |-  ( ( R  e.  CRing  /\  (
( invr `  R ) `  Y )  e.  B  /\  ( Z  ./  W
)  e.  B )  ->  ( ( (
invr `  R ) `  Y )  .x.  ( Z  ./  W ) )  =  ( ( Z 
./  W )  .x.  ( ( invr `  R
) `  Y )
) )
3010, 22, 26, 29syl3anc 1250 . . . 4  |-  ( ph  ->  ( ( ( invr `  R ) `  Y
)  .x.  ( Z  ./  W ) )  =  ( ( Z  ./  W )  .x.  (
( invr `  R ) `  Y ) ) )
3130oveq2d 5960 . . 3  |-  ( ph  ->  ( X  .x.  (
( ( invr `  R
) `  Y )  .x.  ( Z  ./  W
) ) )  =  ( X  .x.  (
( Z  ./  W
)  .x.  ( ( invr `  R ) `  Y ) ) ) )
3215, 28, 313eqtrd 2242 . 2  |-  ( ph  ->  ( ( X  ./  Y )  .x.  ( Z  ./  W ) )  =  ( X  .x.  ( ( Z  ./  W )  .x.  (
( invr `  R ) `  Y ) ) ) )
33 eqid 2205 . . . . . . . . 9  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
345, 33unitgrp 13878 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
3511, 34syl 14 . . . . . . 7  |-  ( ph  ->  ( (mulGrp `  R
)s 
U )  e.  Grp )
36 eqidd 2206 . . . . . . . . 9  |-  ( ph  ->  ( (mulGrp `  R
)s 
U )  =  ( (mulGrp `  R )s  U
) )
376, 36, 17unitgrpbasd 13877 . . . . . . . 8  |-  ( ph  ->  U  =  ( Base `  ( (mulGrp `  R
)s 
U ) ) )
3813, 37eleqtrd 2284 . . . . . . 7  |-  ( ph  ->  Y  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )
3924, 37eleqtrd 2284 . . . . . . 7  |-  ( ph  ->  W  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )
40 eqid 2205 . . . . . . . 8  |-  ( Base `  ( (mulGrp `  R
)s 
U ) )  =  ( Base `  (
(mulGrp `  R )s  U
) )
41 eqid 2205 . . . . . . . 8  |-  ( +g  `  ( (mulGrp `  R
)s 
U ) )  =  ( +g  `  (
(mulGrp `  R )s  U
) )
42 eqid 2205 . . . . . . . 8  |-  ( invg `  ( (mulGrp `  R )s  U ) )  =  ( invg `  ( (mulGrp `  R )s  U
) )
4340, 41, 42grpinvadd 13410 . . . . . . 7  |-  ( ( ( (mulGrp `  R
)s 
U )  e.  Grp  /\  Y  e.  ( Base `  ( (mulGrp `  R
)s 
U ) )  /\  W  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )  ->  ( ( invg `  ( (mulGrp `  R )s  U ) ) `  ( Y ( +g  `  (
(mulGrp `  R )s  U
) ) W ) )  =  ( ( ( invg `  ( (mulGrp `  R )s  U
) ) `  W
) ( +g  `  (
(mulGrp `  R )s  U
) ) ( ( invg `  (
(mulGrp `  R )s  U
) ) `  Y
) ) )
4435, 38, 39, 43syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  ( Y ( +g  `  (
(mulGrp `  R )s  U
) ) W ) )  =  ( ( ( invg `  ( (mulGrp `  R )s  U
) ) `  W
) ( +g  `  (
(mulGrp `  R )s  U
) ) ( ( invg `  (
(mulGrp `  R )s  U
) ) `  Y
) ) )
456, 36, 7, 11invrfvald 13884 . . . . . . 7  |-  ( ph  ->  ( invr `  R
)  =  ( invg `  ( (mulGrp `  R )s  U ) ) )
4645fveq1d 5578 . . . . . 6  |-  ( ph  ->  ( ( invr `  R
) `  ( Y
( +g  `  ( (mulGrp `  R )s  U ) ) W ) )  =  ( ( invg `  ( (mulGrp `  R )s  U
) ) `  ( Y ( +g  `  (
(mulGrp `  R )s  U
) ) W ) ) )
4745fveq1d 5578 . . . . . . 7  |-  ( ph  ->  ( ( invr `  R
) `  W )  =  ( ( invg `  ( (mulGrp `  R )s  U ) ) `  W ) )
4845fveq1d 5578 . . . . . . 7  |-  ( ph  ->  ( ( invr `  R
) `  Y )  =  ( ( invg `  ( (mulGrp `  R )s  U ) ) `  Y ) )
4947, 48oveq12d 5962 . . . . . 6  |-  ( ph  ->  ( ( ( invr `  R ) `  W
) ( +g  `  (
(mulGrp `  R )s  U
) ) ( (
invr `  R ) `  Y ) )  =  ( ( ( invg `  ( (mulGrp `  R )s  U ) ) `  W ) ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  Y
) ) )
5044, 46, 493eqtr4d 2248 . . . . 5  |-  ( ph  ->  ( ( invr `  R
) `  ( Y
( +g  `  ( (mulGrp `  R )s  U ) ) W ) )  =  ( ( ( invr `  R
) `  W )
( +g  `  ( (mulGrp `  R )s  U ) ) ( ( invr `  R
) `  Y )
) )
51 basfn 12890 . . . . . . . . . . . 12  |-  Base  Fn  _V
5210elexd 2785 . . . . . . . . . . . 12  |-  ( ph  ->  R  e.  _V )
53 funfvex 5593 . . . . . . . . . . . . 13  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
5453funfni 5376 . . . . . . . . . . . 12  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
5551, 52, 54sylancr 414 . . . . . . . . . . 11  |-  ( ph  ->  ( Base `  R
)  e.  _V )
561, 55eqeltrid 2292 . . . . . . . . . 10  |-  ( ph  ->  B  e.  _V )
5756, 18ssexd 4184 . . . . . . . . 9  |-  ( ph  ->  U  e.  _V )
58 ressex 12897 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  U  e.  _V )  ->  ( Rs  U )  e.  _V )
59 eqid 2205 . . . . . . . . . . 11  |-  (mulGrp `  ( Rs  U ) )  =  (mulGrp `  ( Rs  U
) )
60 eqid 2205 . . . . . . . . . . 11  |-  ( .r
`  ( Rs  U ) )  =  ( .r
`  ( Rs  U ) )
6159, 60mgpplusgg 13686 . . . . . . . . . 10  |-  ( ( Rs  U )  e.  _V  ->  ( .r `  ( Rs  U ) )  =  ( +g  `  (mulGrp `  ( Rs  U ) ) ) )
6258, 61syl 14 . . . . . . . . 9  |-  ( ( R  e.  CRing  /\  U  e.  _V )  ->  ( .r `  ( Rs  U ) )  =  ( +g  `  (mulGrp `  ( Rs  U
) ) ) )
6310, 57, 62syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( .r `  ( Rs  U ) )  =  ( +g  `  (mulGrp `  ( Rs  U ) ) ) )
64 eqid 2205 . . . . . . . . . 10  |-  ( Rs  U )  =  ( Rs  U )
6564, 3ressmulrg 12977 . . . . . . . . 9  |-  ( ( U  e.  _V  /\  R  e.  CRing )  ->  .x.  =  ( .r `  ( Rs  U ) ) )
6657, 10, 65syl2anc 411 . . . . . . . 8  |-  ( ph  ->  .x.  =  ( .r
`  ( Rs  U ) ) )
67 eqid 2205 . . . . . . . . . . 11  |-  (mulGrp `  R )  =  (mulGrp `  R )
6864, 67mgpress 13693 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  U  e.  _V )  ->  (
(mulGrp `  R )s  U
)  =  (mulGrp `  ( Rs  U ) ) )
6911, 57, 68syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( (mulGrp `  R
)s 
U )  =  (mulGrp `  ( Rs  U ) ) )
7069fveq2d 5580 . . . . . . . 8  |-  ( ph  ->  ( +g  `  (
(mulGrp `  R )s  U
) )  =  ( +g  `  (mulGrp `  ( Rs  U ) ) ) )
7163, 66, 703eqtr4d 2248 . . . . . . 7  |-  ( ph  ->  .x.  =  ( +g  `  ( (mulGrp `  R
)s 
U ) ) )
7271oveqd 5961 . . . . . 6  |-  ( ph  ->  ( Y  .x.  W
)  =  ( Y ( +g  `  (
(mulGrp `  R )s  U
) ) W ) )
7372fveq2d 5580 . . . . 5  |-  ( ph  ->  ( ( invr `  R
) `  ( Y  .x.  W ) )  =  ( ( invr `  R
) `  ( Y
( +g  `  ( (mulGrp `  R )s  U ) ) W ) ) )
7471oveqd 5961 . . . . 5  |-  ( ph  ->  ( ( ( invr `  R ) `  W
)  .x.  ( ( invr `  R ) `  Y ) )  =  ( ( ( invr `  R ) `  W
) ( +g  `  (
(mulGrp `  R )s  U
) ) ( (
invr `  R ) `  Y ) ) )
7550, 73, 743eqtr4d 2248 . . . 4  |-  ( ph  ->  ( ( invr `  R
) `  ( Y  .x.  W ) )  =  ( ( ( invr `  R ) `  W
)  .x.  ( ( invr `  R ) `  Y ) ) )
7675oveq2d 5960 . . 3  |-  ( ph  ->  ( ( X  .x.  Z )  .x.  (
( invr `  R ) `  ( Y  .x.  W
) ) )  =  ( ( X  .x.  Z )  .x.  (
( ( invr `  R
) `  W )  .x.  ( ( invr `  R
) `  Y )
) ) )
771, 3ringcl 13775 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
7811, 12, 23, 77syl3anc 1250 . . . 4  |-  ( ph  ->  ( X  .x.  Z
)  e.  B )
795, 3unitmulcl 13875 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  U  /\  W  e.  U )  ->  ( Y  .x.  W )  e.  U )
8011, 13, 24, 79syl3anc 1250 . . . 4  |-  ( ph  ->  ( Y  .x.  W
)  e.  U )
812, 4, 6, 7, 9, 11, 78, 80dvrvald 13896 . . 3  |-  ( ph  ->  ( ( X  .x.  Z )  ./  ( Y  .x.  W ) )  =  ( ( X 
.x.  Z )  .x.  ( ( invr `  R
) `  ( Y  .x.  W ) ) ) )
825, 19unitinvcl 13885 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  W  e.  U )  ->  (
( invr `  R ) `  W )  e.  U
)
8311, 24, 82syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( invr `  R
) `  W )  e.  U )
8418, 83sseldd 3194 . . . . . . 7  |-  ( ph  ->  ( ( invr `  R
) `  W )  e.  B )
851, 3ringass 13778 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Z  e.  B  /\  ( ( invr `  R
) `  W )  e.  B ) )  -> 
( ( X  .x.  Z )  .x.  (
( invr `  R ) `  W ) )  =  ( X  .x.  ( Z  .x.  ( ( invr `  R ) `  W
) ) ) )
8611, 12, 23, 84, 85syl13anc 1252 . . . . . 6  |-  ( ph  ->  ( ( X  .x.  Z )  .x.  (
( invr `  R ) `  W ) )  =  ( X  .x.  ( Z  .x.  ( ( invr `  R ) `  W
) ) ) )
872, 4, 6, 7, 9, 11, 23, 24dvrvald 13896 . . . . . . 7  |-  ( ph  ->  ( Z  ./  W
)  =  ( Z 
.x.  ( ( invr `  R ) `  W
) ) )
8887oveq2d 5960 . . . . . 6  |-  ( ph  ->  ( X  .x.  ( Z  ./  W ) )  =  ( X  .x.  ( Z  .x.  ( (
invr `  R ) `  W ) ) ) )
8986, 88eqtr4d 2241 . . . . 5  |-  ( ph  ->  ( ( X  .x.  Z )  .x.  (
( invr `  R ) `  W ) )  =  ( X  .x.  ( Z  ./  W ) ) )
9089oveq1d 5959 . . . 4  |-  ( ph  ->  ( ( ( X 
.x.  Z )  .x.  ( ( invr `  R
) `  W )
)  .x.  ( ( invr `  R ) `  Y ) )  =  ( ( X  .x.  ( Z  ./  W ) )  .x.  ( (
invr `  R ) `  Y ) ) )
911, 3ringass 13778 . . . . 5  |-  ( ( R  e.  Ring  /\  (
( X  .x.  Z
)  e.  B  /\  ( ( invr `  R
) `  W )  e.  B  /\  (
( invr `  R ) `  Y )  e.  B
) )  ->  (
( ( X  .x.  Z )  .x.  (
( invr `  R ) `  W ) )  .x.  ( ( invr `  R
) `  Y )
)  =  ( ( X  .x.  Z ) 
.x.  ( ( (
invr `  R ) `  W )  .x.  (
( invr `  R ) `  Y ) ) ) )
9211, 78, 84, 22, 91syl13anc 1252 . . . 4  |-  ( ph  ->  ( ( ( X 
.x.  Z )  .x.  ( ( invr `  R
) `  W )
)  .x.  ( ( invr `  R ) `  Y ) )  =  ( ( X  .x.  Z )  .x.  (
( ( invr `  R
) `  W )  .x.  ( ( invr `  R
) `  Y )
) ) )
931, 3ringass 13778 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  ( Z  ./  W )  e.  B  /\  (
( invr `  R ) `  Y )  e.  B
) )  ->  (
( X  .x.  ( Z  ./  W ) ) 
.x.  ( ( invr `  R ) `  Y
) )  =  ( X  .x.  ( ( Z  ./  W )  .x.  ( ( invr `  R
) `  Y )
) ) )
9411, 12, 26, 22, 93syl13anc 1252 . . . 4  |-  ( ph  ->  ( ( X  .x.  ( Z  ./  W ) )  .x.  ( (
invr `  R ) `  Y ) )  =  ( X  .x.  (
( Z  ./  W
)  .x.  ( ( invr `  R ) `  Y ) ) ) )
9590, 92, 943eqtr3rd 2247 . . 3  |-  ( ph  ->  ( X  .x.  (
( Z  ./  W
)  .x.  ( ( invr `  R ) `  Y ) ) )  =  ( ( X 
.x.  Z )  .x.  ( ( ( invr `  R ) `  W
)  .x.  ( ( invr `  R ) `  Y ) ) ) )
9676, 81, 953eqtr4rd 2249 . 2  |-  ( ph  ->  ( X  .x.  (
( Z  ./  W
)  .x.  ( ( invr `  R ) `  Y ) ) )  =  ( ( X 
.x.  Z )  ./  ( Y  .x.  W ) ) )
9732, 96eqtrd 2238 1  |-  ( ph  ->  ( ( X  ./  Y )  .x.  ( Z  ./  W ) )  =  ( ( X 
.x.  Z )  ./  ( Y  .x.  W ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   +g cplusg 12909   .rcmulr 12910   Grpcgrp 13332   invgcminusg 13333  mulGrpcmgp 13682  SRingcsrg 13725   Ringcrg 13758   CRingccrg 13759  Unitcui 13849   invrcinvr 13882  /rcdvr 13893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-cmn 13622  df-abl 13623  df-mgp 13683  df-ur 13722  df-srg 13726  df-ring 13760  df-cring 13761  df-oppr 13830  df-dvdsr 13851  df-unit 13852  df-invr 13883  df-dvr 13894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator