| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbief | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbief.1 | ⊢ 𝐴 ∈ V |
| csbief.2 | ⊢ Ⅎ𝑥𝐶 |
| csbief.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbief | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbief.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | csbief.2 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) |
| 4 | csbief.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 5 | 3, 4 | csbiegf 3138 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Ⅎwnfc 2336 Vcvv 2773 ⦋csb 3094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sbc 3000 df-csb 3095 |
| This theorem is referenced by: csbie 3140 csbing 3381 csbopabg 4126 pofun 4363 csbima12g 5048 csbiotag 5269 csbriotag 5919 csbov123g 5990 eqerlem 6658 zsumdc 11739 |
| Copyright terms: Public domain | W3C validator |