ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbief GIF version

Theorem csbief 2973
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbief.1 𝐴 ∈ V
csbief.2 𝑥𝐶
csbief.3 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbief 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbief
StepHypRef Expression
1 csbief.1 . 2 𝐴 ∈ V
2 csbief.2 . . . 4 𝑥𝐶
32a1i 9 . . 3 (𝐴 ∈ V → 𝑥𝐶)
4 csbief.3 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
53, 4csbiegf 2972 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐶)
61, 5ax-mp 7 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1290  wcel 1439  wnfc 2216  Vcvv 2620  csb 2934
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-sbc 2842  df-csb 2935
This theorem is referenced by:  csbie  2974  csbing  3208  csbopabg  3922  pofun  4148  csbima12g  4806  csbiotag  5021  csbriotag  5634  csbov123g  5701  eqerlem  6337  zisum  10835
  Copyright terms: Public domain W3C validator