ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbief GIF version

Theorem csbief 3093
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbief.1 𝐴 ∈ V
csbief.2 𝑥𝐶
csbief.3 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbief 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbief
StepHypRef Expression
1 csbief.1 . 2 𝐴 ∈ V
2 csbief.2 . . . 4 𝑥𝐶
32a1i 9 . . 3 (𝐴 ∈ V → 𝑥𝐶)
4 csbief.3 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
53, 4csbiegf 3092 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐶)
61, 5ax-mp 5 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wnfc 2299  Vcvv 2730  csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by:  csbie  3094  csbing  3334  csbopabg  4065  pofun  4295  csbima12g  4970  csbiotag  5189  csbriotag  5818  csbov123g  5888  eqerlem  6540  zsumdc  11334
  Copyright terms: Public domain W3C validator