ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbov123g Unicode version

Theorem csbov123g 5960
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
csbov123g  |-  ( A  e.  D  ->  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C
) )

Proof of Theorem csbov123g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3087 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ ( B F C )  = 
[_ A  /  x ]_ ( B F C ) )
2 csbeq1 3087 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ F  = 
[_ A  /  x ]_ F )
3 csbeq1 3087 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ B  = 
[_ A  /  x ]_ B )
4 csbeq1 3087 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ C  = 
[_ A  /  x ]_ C )
52, 3, 4oveq123d 5943 . . 3  |-  ( y  =  A  ->  ( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C ) )
61, 5eqeq12d 2211 . 2  |-  ( y  =  A  ->  ( [_ y  /  x ]_ ( B F C )  =  ( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C )  <->  [_ A  /  x ]_ ( B F C )  =  (
[_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C ) ) )
7 vex 2766 . . 3  |-  y  e. 
_V
8 nfcsb1v 3117 . . . 4  |-  F/_ x [_ y  /  x ]_ B
9 nfcsb1v 3117 . . . 4  |-  F/_ x [_ y  /  x ]_ F
10 nfcsb1v 3117 . . . 4  |-  F/_ x [_ y  /  x ]_ C
118, 9, 10nfov 5952 . . 3  |-  F/_ x
( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C )
12 csbeq1a 3093 . . . 4  |-  ( x  =  y  ->  F  =  [_ y  /  x ]_ F )
13 csbeq1a 3093 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
14 csbeq1a 3093 . . . 4  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
1512, 13, 14oveq123d 5943 . . 3  |-  ( x  =  y  ->  ( B F C )  =  ( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C
) )
167, 11, 15csbief 3129 . 2  |-  [_ y  /  x ]_ ( B F C )  =  ( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C
)
176, 16vtoclg 2824 1  |-  ( A  e.  D  ->  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   [_csb 3084  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  csbov12g  5961
  Copyright terms: Public domain W3C validator