ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbov123g Unicode version

Theorem csbov123g 5701
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
csbov123g  |-  ( A  e.  D  ->  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C
) )

Proof of Theorem csbov123g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 2937 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ ( B F C )  = 
[_ A  /  x ]_ ( B F C ) )
2 csbeq1 2937 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ F  = 
[_ A  /  x ]_ F )
3 csbeq1 2937 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ B  = 
[_ A  /  x ]_ B )
4 csbeq1 2937 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ C  = 
[_ A  /  x ]_ C )
52, 3, 4oveq123d 5687 . . 3  |-  ( y  =  A  ->  ( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C ) )
61, 5eqeq12d 2103 . 2  |-  ( y  =  A  ->  ( [_ y  /  x ]_ ( B F C )  =  ( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C )  <->  [_ A  /  x ]_ ( B F C )  =  (
[_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C ) ) )
7 vex 2623 . . 3  |-  y  e. 
_V
8 nfcsb1v 2964 . . . 4  |-  F/_ x [_ y  /  x ]_ B
9 nfcsb1v 2964 . . . 4  |-  F/_ x [_ y  /  x ]_ F
10 nfcsb1v 2964 . . . 4  |-  F/_ x [_ y  /  x ]_ C
118, 9, 10nfov 5693 . . 3  |-  F/_ x
( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C )
12 csbeq1a 2942 . . . 4  |-  ( x  =  y  ->  F  =  [_ y  /  x ]_ F )
13 csbeq1a 2942 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
14 csbeq1a 2942 . . . 4  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
1512, 13, 14oveq123d 5687 . . 3  |-  ( x  =  y  ->  ( B F C )  =  ( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C
) )
167, 11, 15csbief 2973 . 2  |-  [_ y  /  x ]_ ( B F C )  =  ( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C
)
176, 16vtoclg 2680 1  |-  ( A  e.  D  ->  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    e. wcel 1439   [_csb 2934  (class class class)co 5666
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-v 2622  df-sbc 2842  df-csb 2935  df-un 3004  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-iota 4993  df-fv 5036  df-ov 5669
This theorem is referenced by:  csbov12g  5702
  Copyright terms: Public domain W3C validator