ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbfv12g Unicode version

Theorem csbfv12g 5522
Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.)
Assertion
Ref Expression
csbfv12g  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )

Proof of Theorem csbfv12g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbiotag 5181 . . 3  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( iota y B F y )  =  ( iota y [. A  /  x ]. B F y ) )
2 sbcbrg 4036 . . . . 5  |-  ( A  e.  C  ->  ( [. A  /  x ]. B F y  <->  [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ y
) )
3 csbconstg 3059 . . . . . 6  |-  ( A  e.  C  ->  [_ A  /  x ]_ y  =  y )
43breq2d 3994 . . . . 5  |-  ( A  e.  C  ->  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ y  <->  [_ A  /  x ]_ B [_ A  /  x ]_ F y ) )
52, 4bitrd 187 . . . 4  |-  ( A  e.  C  ->  ( [. A  /  x ]. B F y  <->  [_ A  /  x ]_ B [_ A  /  x ]_ F y ) )
65iotabidv 5174 . . 3  |-  ( A  e.  C  ->  ( iota y [. A  /  x ]. B F y )  =  ( iota y [_ A  /  x ]_ B [_ A  /  x ]_ F y ) )
71, 6eqtrd 2198 . 2  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( iota y B F y )  =  ( iota y [_ A  /  x ]_ B [_ A  /  x ]_ F y ) )
8 df-fv 5196 . . 3  |-  ( F `
 B )  =  ( iota y B F y )
98csbeq2i 3072 . 2  |-  [_ A  /  x ]_ ( F `
 B )  = 
[_ A  /  x ]_ ( iota y B F y )
10 df-fv 5196 . 2  |-  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  ( iota y [_ A  /  x ]_ B [_ A  /  x ]_ F
y )
117, 9, 103eqtr4g 2224 1  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   [.wsbc 2951   [_csb 3045   class class class wbr 3982   iotacio 5151   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196
This theorem is referenced by:  csbfv2g  5523
  Copyright terms: Public domain W3C validator