| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > csbiotag | GIF version | ||
| Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) | 
| Ref | Expression | 
|---|---|
| csbiotag | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | csbeq1 3087 | . . 3 ⊢ (𝑧 = 𝐴 → ⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = ⦋𝐴 / 𝑥⦌(℩𝑦𝜑)) | |
| 2 | dfsbcq2 2992 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | iotabidv 5241 | . . 3 ⊢ (𝑧 = 𝐴 → (℩𝑦[𝑧 / 𝑥]𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) | 
| 4 | 1, 3 | eqeq12d 2211 | . 2 ⊢ (𝑧 = 𝐴 → (⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) ↔ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))) | 
| 5 | vex 2766 | . . 3 ⊢ 𝑧 ∈ V | |
| 6 | nfs1v 1958 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 7 | 6 | nfiotaw 5223 | . . 3 ⊢ Ⅎ𝑥(℩𝑦[𝑧 / 𝑥]𝜑) | 
| 8 | sbequ12 1785 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 9 | 8 | iotabidv 5241 | . . 3 ⊢ (𝑥 = 𝑧 → (℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑)) | 
| 10 | 5, 7, 9 | csbief 3129 | . 2 ⊢ ⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) | 
| 11 | 4, 10 | vtoclg 2824 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 [wsb 1776 ∈ wcel 2167 [wsbc 2989 ⦋csb 3084 ℩cio 5217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-sn 3628 df-uni 3840 df-iota 5219 | 
| This theorem is referenced by: csbfv12g 5596 | 
| Copyright terms: Public domain | W3C validator |