| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbiotag | GIF version | ||
| Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) |
| Ref | Expression |
|---|---|
| csbiotag | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3097 | . . 3 ⊢ (𝑧 = 𝐴 → ⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = ⦋𝐴 / 𝑥⦌(℩𝑦𝜑)) | |
| 2 | dfsbcq2 3002 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | iotabidv 5259 | . . 3 ⊢ (𝑧 = 𝐴 → (℩𝑦[𝑧 / 𝑥]𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
| 4 | 1, 3 | eqeq12d 2221 | . 2 ⊢ (𝑧 = 𝐴 → (⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) ↔ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))) |
| 5 | vex 2776 | . . 3 ⊢ 𝑧 ∈ V | |
| 6 | nfs1v 1968 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 7 | 6 | nfiotaw 5241 | . . 3 ⊢ Ⅎ𝑥(℩𝑦[𝑧 / 𝑥]𝜑) |
| 8 | sbequ12 1795 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 9 | 8 | iotabidv 5259 | . . 3 ⊢ (𝑥 = 𝑧 → (℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑)) |
| 10 | 5, 7, 9 | csbief 3139 | . 2 ⊢ ⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) |
| 11 | 4, 10 | vtoclg 2834 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 [wsb 1786 ∈ wcel 2177 [wsbc 2999 ⦋csb 3094 ℩cio 5235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-sbc 3000 df-csb 3095 df-sn 3640 df-uni 3853 df-iota 5237 |
| This theorem is referenced by: csbfv12g 5621 |
| Copyright terms: Public domain | W3C validator |