ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiotag GIF version

Theorem csbiotag 5251
Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
csbiotag (𝐴𝑉𝐴 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem csbiotag
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3087 . . 3 (𝑧 = 𝐴𝑧 / 𝑥(℩𝑦𝜑) = 𝐴 / 𝑥(℩𝑦𝜑))
2 dfsbcq2 2992 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32iotabidv 5241 . . 3 (𝑧 = 𝐴 → (℩𝑦[𝑧 / 𝑥]𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))
41, 3eqeq12d 2211 . 2 (𝑧 = 𝐴 → (𝑧 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) ↔ 𝐴 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)))
5 vex 2766 . . 3 𝑧 ∈ V
6 nfs1v 1958 . . . 4 𝑥[𝑧 / 𝑥]𝜑
76nfiotaw 5223 . . 3 𝑥(℩𝑦[𝑧 / 𝑥]𝜑)
8 sbequ12 1785 . . . 4 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
98iotabidv 5241 . . 3 (𝑥 = 𝑧 → (℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑))
105, 7, 9csbief 3129 . 2 𝑧 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑)
114, 10vtoclg 2824 1 (𝐴𝑉𝐴 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  [wsb 1776  wcel 2167  [wsbc 2989  csb 3084  cio 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-sn 3628  df-uni 3840  df-iota 5219
This theorem is referenced by:  csbfv12g  5596
  Copyright terms: Public domain W3C validator