Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbiotag | GIF version |
Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) |
Ref | Expression |
---|---|
csbiotag | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3052 | . . 3 ⊢ (𝑧 = 𝐴 → ⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = ⦋𝐴 / 𝑥⦌(℩𝑦𝜑)) | |
2 | dfsbcq2 2958 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | iotabidv 5179 | . . 3 ⊢ (𝑧 = 𝐴 → (℩𝑦[𝑧 / 𝑥]𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
4 | 1, 3 | eqeq12d 2185 | . 2 ⊢ (𝑧 = 𝐴 → (⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) ↔ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))) |
5 | vex 2733 | . . 3 ⊢ 𝑧 ∈ V | |
6 | nfs1v 1932 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
7 | 6 | nfiotaw 5162 | . . 3 ⊢ Ⅎ𝑥(℩𝑦[𝑧 / 𝑥]𝜑) |
8 | sbequ12 1764 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
9 | 8 | iotabidv 5179 | . . 3 ⊢ (𝑥 = 𝑧 → (℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑)) |
10 | 5, 7, 9 | csbief 3093 | . 2 ⊢ ⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) |
11 | 4, 10 | vtoclg 2790 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 [wsb 1755 ∈ wcel 2141 [wsbc 2955 ⦋csb 3049 ℩cio 5156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-sn 3587 df-uni 3795 df-iota 5158 |
This theorem is referenced by: csbfv12g 5530 |
Copyright terms: Public domain | W3C validator |