| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcl | Unicode version | ||
| Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| subcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval 8264 |
. 2
| |
| 2 | negeu 8263 |
. . . 4
| |
| 3 | 2 | ancoms 268 |
. . 3
|
| 4 | riotacl 5914 |
. . 3
| |
| 5 | 3, 4 | syl 14 |
. 2
|
| 6 | 1, 5 | eqeltrd 2282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 |
| This theorem is referenced by: negcl 8272 subf 8274 pncan3 8280 npcan 8281 addsubass 8282 addsub 8283 addsub12 8285 addsubeq4 8287 npncan 8293 nppcan 8294 nnpcan 8295 nppcan3 8296 subcan2 8297 subsub2 8300 subsub4 8305 nnncan 8307 nnncan1 8308 nnncan2 8309 npncan3 8310 addsub4 8315 subadd4 8316 peano2cnm 8338 subcli 8348 subcld 8383 subeqrev 8448 subdi 8457 subdir 8458 mulsub2 8474 recextlem1 8724 recexap 8726 div2subap 8910 cju 9034 ofnegsub 9035 halfaddsubcl 9270 halfaddsub 9271 iccf1o 10126 ser3sub 10668 sqsubswap 10744 subsq 10791 subsq2 10792 bcn2 10909 shftval2 11137 2shfti 11142 sqabssub 11367 abssub 11412 abs3dif 11416 abs2dif 11417 abs2difabs 11419 climuni 11604 cjcn2 11627 recn2 11628 imcn2 11629 climsub 11639 fisum0diag2 11758 arisum2 11810 geosergap 11817 geolim 11822 geolim2 11823 georeclim 11824 geo2sum 11825 tanaddap 12050 addsin 12053 fzocongeq 12169 odd2np1 12184 phiprm 12545 pythagtriplem4 12591 pythagtriplem12 12598 pythagtriplem14 12600 fldivp1 12671 4sqlem19 12732 cnmet 15002 dveflem 15198 dvef 15199 efimpi 15291 ptolemy 15296 tangtx 15310 abssinper 15318 1sgm2ppw 15467 perfect1 15470 lgsquad2 15560 |
| Copyright terms: Public domain | W3C validator |