| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcl | Unicode version | ||
| Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| subcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval 8338 |
. 2
| |
| 2 | negeu 8337 |
. . . 4
| |
| 3 | 2 | ancoms 268 |
. . 3
|
| 4 | riotacl 5970 |
. . 3
| |
| 5 | 3, 4 | syl 14 |
. 2
|
| 6 | 1, 5 | eqeltrd 2306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 |
| This theorem is referenced by: negcl 8346 subf 8348 pncan3 8354 npcan 8355 addsubass 8356 addsub 8357 addsub12 8359 addsubeq4 8361 npncan 8367 nppcan 8368 nnpcan 8369 nppcan3 8370 subcan2 8371 subsub2 8374 subsub4 8379 nnncan 8381 nnncan1 8382 nnncan2 8383 npncan3 8384 addsub4 8389 subadd4 8390 peano2cnm 8412 subcli 8422 subcld 8457 subeqrev 8522 subdi 8531 subdir 8532 mulsub2 8548 recextlem1 8798 recexap 8800 div2subap 8984 cju 9108 ofnegsub 9109 halfaddsubcl 9344 halfaddsub 9345 iccf1o 10200 ser3sub 10745 sqsubswap 10821 subsq 10868 subsq2 10869 bcn2 10986 pfxccatin12lem1 11260 pfxccatin12lem2 11263 shftval2 11337 2shfti 11342 sqabssub 11567 abssub 11612 abs3dif 11616 abs2dif 11617 abs2difabs 11619 climuni 11804 cjcn2 11827 recn2 11828 imcn2 11829 climsub 11839 fisum0diag2 11958 arisum2 12010 geosergap 12017 geolim 12022 geolim2 12023 georeclim 12024 geo2sum 12025 tanaddap 12250 addsin 12253 fzocongeq 12369 odd2np1 12384 phiprm 12745 pythagtriplem4 12791 pythagtriplem12 12798 pythagtriplem14 12800 fldivp1 12871 4sqlem19 12932 cnmet 15204 dveflem 15400 dvef 15401 efimpi 15493 ptolemy 15498 tangtx 15512 abssinper 15520 1sgm2ppw 15669 perfect1 15672 lgsquad2 15762 |
| Copyright terms: Public domain | W3C validator |