| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcl | Unicode version | ||
| Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| subcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval 8237 |
. 2
| |
| 2 | negeu 8236 |
. . . 4
| |
| 3 | 2 | ancoms 268 |
. . 3
|
| 4 | riotacl 5895 |
. . 3
| |
| 5 | 3, 4 | syl 14 |
. 2
|
| 6 | 1, 5 | eqeltrd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8218 |
| This theorem is referenced by: negcl 8245 subf 8247 pncan3 8253 npcan 8254 addsubass 8255 addsub 8256 addsub12 8258 addsubeq4 8260 npncan 8266 nppcan 8267 nnpcan 8268 nppcan3 8269 subcan2 8270 subsub2 8273 subsub4 8278 nnncan 8280 nnncan1 8281 nnncan2 8282 npncan3 8283 addsub4 8288 subadd4 8289 peano2cnm 8311 subcli 8321 subcld 8356 subeqrev 8421 subdi 8430 subdir 8431 mulsub2 8447 recextlem1 8697 recexap 8699 div2subap 8883 cju 9007 ofnegsub 9008 halfaddsubcl 9243 halfaddsub 9244 iccf1o 10098 ser3sub 10634 sqsubswap 10710 subsq 10757 subsq2 10758 bcn2 10875 shftval2 11010 2shfti 11015 sqabssub 11240 abssub 11285 abs3dif 11289 abs2dif 11290 abs2difabs 11292 climuni 11477 cjcn2 11500 recn2 11501 imcn2 11502 climsub 11512 fisum0diag2 11631 arisum2 11683 geosergap 11690 geolim 11695 geolim2 11696 georeclim 11697 geo2sum 11698 tanaddap 11923 addsin 11926 fzocongeq 12042 odd2np1 12057 phiprm 12418 pythagtriplem4 12464 pythagtriplem12 12471 pythagtriplem14 12473 fldivp1 12544 4sqlem19 12605 cnmet 14874 dveflem 15070 dvef 15071 efimpi 15163 ptolemy 15168 tangtx 15182 abssinper 15190 1sgm2ppw 15339 perfect1 15342 lgsquad2 15432 |
| Copyright terms: Public domain | W3C validator |