Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subcl | Unicode version |
Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
subcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subval 8111 | . 2 | |
2 | negeu 8110 | . . . 4 | |
3 | 2 | ancoms 266 | . . 3 |
4 | riotacl 5823 | . . 3 | |
5 | 3, 4 | syl 14 | . 2 |
6 | 1, 5 | eqeltrd 2247 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wreu 2450 crio 5808 (class class class)co 5853 cc 7772 caddc 7777 cmin 8090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 |
This theorem is referenced by: negcl 8119 subf 8121 pncan3 8127 npcan 8128 addsubass 8129 addsub 8130 addsub12 8132 addsubeq4 8134 npncan 8140 nppcan 8141 nnpcan 8142 nppcan3 8143 subcan2 8144 subsub2 8147 subsub4 8152 nnncan 8154 nnncan1 8155 nnncan2 8156 npncan3 8157 addsub4 8162 subadd4 8163 peano2cnm 8185 subcli 8195 subcld 8230 subeqrev 8295 subdi 8304 subdir 8305 mulsub2 8321 recextlem1 8569 recexap 8571 div2subap 8754 cju 8877 halfaddsubcl 9111 halfaddsub 9112 iccf1o 9961 ser3sub 10462 sqsubswap 10536 subsq 10582 subsq2 10583 bcn2 10698 shftval2 10790 2shfti 10795 sqabssub 11020 abssub 11065 abs3dif 11069 abs2dif 11070 abs2difabs 11072 climuni 11256 cjcn2 11279 recn2 11280 imcn2 11281 climsub 11291 fisum0diag2 11410 arisum2 11462 geosergap 11469 geolim 11474 geolim2 11475 georeclim 11476 geo2sum 11477 tanaddap 11702 addsin 11705 fzocongeq 11818 odd2np1 11832 phiprm 12177 pythagtriplem4 12222 pythagtriplem12 12229 pythagtriplem14 12231 fldivp1 12300 cnmet 13324 dveflem 13481 dvef 13482 efimpi 13534 ptolemy 13539 tangtx 13553 abssinper 13561 |
Copyright terms: Public domain | W3C validator |