| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcl | Unicode version | ||
| Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| subcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval 8218 |
. 2
| |
| 2 | negeu 8217 |
. . . 4
| |
| 3 | 2 | ancoms 268 |
. . 3
|
| 4 | riotacl 5892 |
. . 3
| |
| 5 | 3, 4 | syl 14 |
. 2
|
| 6 | 1, 5 | eqeltrd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 |
| This theorem is referenced by: negcl 8226 subf 8228 pncan3 8234 npcan 8235 addsubass 8236 addsub 8237 addsub12 8239 addsubeq4 8241 npncan 8247 nppcan 8248 nnpcan 8249 nppcan3 8250 subcan2 8251 subsub2 8254 subsub4 8259 nnncan 8261 nnncan1 8262 nnncan2 8263 npncan3 8264 addsub4 8269 subadd4 8270 peano2cnm 8292 subcli 8302 subcld 8337 subeqrev 8402 subdi 8411 subdir 8412 mulsub2 8428 recextlem1 8678 recexap 8680 div2subap 8864 cju 8988 ofnegsub 8989 halfaddsubcl 9224 halfaddsub 9225 iccf1o 10079 ser3sub 10615 sqsubswap 10691 subsq 10738 subsq2 10739 bcn2 10856 shftval2 10991 2shfti 10996 sqabssub 11221 abssub 11266 abs3dif 11270 abs2dif 11271 abs2difabs 11273 climuni 11458 cjcn2 11481 recn2 11482 imcn2 11483 climsub 11493 fisum0diag2 11612 arisum2 11664 geosergap 11671 geolim 11676 geolim2 11677 georeclim 11678 geo2sum 11679 tanaddap 11904 addsin 11907 fzocongeq 12023 odd2np1 12038 phiprm 12391 pythagtriplem4 12437 pythagtriplem12 12444 pythagtriplem14 12446 fldivp1 12517 4sqlem19 12578 cnmet 14766 dveflem 14962 dvef 14963 efimpi 15055 ptolemy 15060 tangtx 15074 abssinper 15082 1sgm2ppw 15231 perfect1 15234 lgsquad2 15324 |
| Copyright terms: Public domain | W3C validator |