| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcl | Unicode version | ||
| Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| subcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval 8266 |
. 2
| |
| 2 | negeu 8265 |
. . . 4
| |
| 3 | 2 | ancoms 268 |
. . 3
|
| 4 | riotacl 5916 |
. . 3
| |
| 5 | 3, 4 | syl 14 |
. 2
|
| 6 | 1, 5 | eqeltrd 2282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-resscn 8019 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 |
| This theorem is referenced by: negcl 8274 subf 8276 pncan3 8282 npcan 8283 addsubass 8284 addsub 8285 addsub12 8287 addsubeq4 8289 npncan 8295 nppcan 8296 nnpcan 8297 nppcan3 8298 subcan2 8299 subsub2 8302 subsub4 8307 nnncan 8309 nnncan1 8310 nnncan2 8311 npncan3 8312 addsub4 8317 subadd4 8318 peano2cnm 8340 subcli 8350 subcld 8385 subeqrev 8450 subdi 8459 subdir 8460 mulsub2 8476 recextlem1 8726 recexap 8728 div2subap 8912 cju 9036 ofnegsub 9037 halfaddsubcl 9272 halfaddsub 9273 iccf1o 10128 ser3sub 10670 sqsubswap 10746 subsq 10793 subsq2 10794 bcn2 10911 shftval2 11170 2shfti 11175 sqabssub 11400 abssub 11445 abs3dif 11449 abs2dif 11450 abs2difabs 11452 climuni 11637 cjcn2 11660 recn2 11661 imcn2 11662 climsub 11672 fisum0diag2 11791 arisum2 11843 geosergap 11850 geolim 11855 geolim2 11856 georeclim 11857 geo2sum 11858 tanaddap 12083 addsin 12086 fzocongeq 12202 odd2np1 12217 phiprm 12578 pythagtriplem4 12624 pythagtriplem12 12631 pythagtriplem14 12633 fldivp1 12704 4sqlem19 12765 cnmet 15035 dveflem 15231 dvef 15232 efimpi 15324 ptolemy 15329 tangtx 15343 abssinper 15351 1sgm2ppw 15500 perfect1 15503 lgsquad2 15593 |
| Copyright terms: Public domain | W3C validator |