| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcl | Unicode version | ||
| Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| subcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval 8299 |
. 2
| |
| 2 | negeu 8298 |
. . . 4
| |
| 3 | 2 | ancoms 268 |
. . 3
|
| 4 | riotacl 5937 |
. . 3
| |
| 5 | 3, 4 | syl 14 |
. 2
|
| 6 | 1, 5 | eqeltrd 2284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 |
| This theorem is referenced by: negcl 8307 subf 8309 pncan3 8315 npcan 8316 addsubass 8317 addsub 8318 addsub12 8320 addsubeq4 8322 npncan 8328 nppcan 8329 nnpcan 8330 nppcan3 8331 subcan2 8332 subsub2 8335 subsub4 8340 nnncan 8342 nnncan1 8343 nnncan2 8344 npncan3 8345 addsub4 8350 subadd4 8351 peano2cnm 8373 subcli 8383 subcld 8418 subeqrev 8483 subdi 8492 subdir 8493 mulsub2 8509 recextlem1 8759 recexap 8761 div2subap 8945 cju 9069 ofnegsub 9070 halfaddsubcl 9305 halfaddsub 9306 iccf1o 10161 ser3sub 10705 sqsubswap 10781 subsq 10828 subsq2 10829 bcn2 10946 pfxccatin12lem1 11219 pfxccatin12lem2 11222 shftval2 11252 2shfti 11257 sqabssub 11482 abssub 11527 abs3dif 11531 abs2dif 11532 abs2difabs 11534 climuni 11719 cjcn2 11742 recn2 11743 imcn2 11744 climsub 11754 fisum0diag2 11873 arisum2 11925 geosergap 11932 geolim 11937 geolim2 11938 georeclim 11939 geo2sum 11940 tanaddap 12165 addsin 12168 fzocongeq 12284 odd2np1 12299 phiprm 12660 pythagtriplem4 12706 pythagtriplem12 12713 pythagtriplem14 12715 fldivp1 12786 4sqlem19 12847 cnmet 15117 dveflem 15313 dvef 15314 efimpi 15406 ptolemy 15411 tangtx 15425 abssinper 15433 1sgm2ppw 15582 perfect1 15585 lgsquad2 15675 |
| Copyright terms: Public domain | W3C validator |