ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbov2g Unicode version

Theorem csbov2g 5744
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
Assertion
Ref Expression
csbov2g  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B F C )  =  ( B F [_ A  /  x ]_ C
) )
Distinct variable groups:    x, B    x, F
Allowed substitution hints:    A( x)    C( x)    V( x)

Proof of Theorem csbov2g
StepHypRef Expression
1 csbov12g 5742 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F [_ A  /  x ]_ C
) )
2 csbconstg 2967 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  B )
32oveq1d 5721 . 2  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B F [_ A  /  x ]_ C )  =  ( B F
[_ A  /  x ]_ C ) )
41, 3eqtrd 2132 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B F C )  =  ( B F [_ A  /  x ]_ C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1299    e. wcel 1448   [_csb 2955  (class class class)co 5706
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-rex 2381  df-v 2643  df-sbc 2863  df-csb 2956  df-un 3025  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-iota 5024  df-fv 5067  df-ov 5709
This theorem is referenced by:  csbnegg  7831  fsummulc2  11056
  Copyright terms: Public domain W3C validator