ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbnegg GIF version

Theorem csbnegg 8173
Description: Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
csbnegg (𝐴𝑉𝐴 / 𝑥-𝐵 = -𝐴 / 𝑥𝐵)

Proof of Theorem csbnegg
StepHypRef Expression
1 csbov2g 5932 . 2 (𝐴𝑉𝐴 / 𝑥(0 − 𝐵) = (0 − 𝐴 / 𝑥𝐵))
2 df-neg 8149 . . 3 -𝐵 = (0 − 𝐵)
32csbeq2i 3099 . 2 𝐴 / 𝑥-𝐵 = 𝐴 / 𝑥(0 − 𝐵)
4 df-neg 8149 . 2 -𝐴 / 𝑥𝐵 = (0 − 𝐴 / 𝑥𝐵)
51, 3, 43eqtr4g 2247 1 (𝐴𝑉𝐴 / 𝑥-𝐵 = -𝐴 / 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  csb 3072  (class class class)co 5891  0cc0 7829  cmin 8146  -cneg 8147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-iota 5193  df-fv 5239  df-ov 5894  df-neg 8149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator