ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcand Unicode version

Theorem dcand 934
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.)
Hypotheses
Ref Expression
dcand.1  |-  ( ph  -> DECID  ps )
dcand.2  |-  ( ph  -> DECID  ch )
Assertion
Ref Expression
dcand  |-  ( ph  -> DECID  ( ps  /\  ch )
)

Proof of Theorem dcand
StepHypRef Expression
1 dcand.1 . . . 4  |-  ( ph  -> DECID  ps )
2 df-dc 836 . . . . 5  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
3 id 19 . . . . . . 7  |-  ( -. 
ps  ->  -.  ps )
43intnanrd 933 . . . . . 6  |-  ( -. 
ps  ->  -.  ( ps  /\ 
ch ) )
54orim2i 762 . . . . 5  |-  ( ( ps  \/  -.  ps )  ->  ( ps  \/  -.  ( ps  /\  ch ) ) )
62, 5sylbi 121 . . . 4  |-  (DECID  ps  ->  ( ps  \/  -.  ( ps  /\  ch ) ) )
71, 6syl 14 . . 3  |-  ( ph  ->  ( ps  \/  -.  ( ps  /\  ch )
) )
8 dcand.2 . . . 4  |-  ( ph  -> DECID  ch )
9 df-dc 836 . . . . 5  |-  (DECID  ch  <->  ( ch  \/  -.  ch ) )
10 id 19 . . . . . . 7  |-  ( -. 
ch  ->  -.  ch )
1110intnand 932 . . . . . 6  |-  ( -. 
ch  ->  -.  ( ps  /\ 
ch ) )
1211orim2i 762 . . . . 5  |-  ( ( ch  \/  -.  ch )  ->  ( ch  \/  -.  ( ps  /\  ch ) ) )
139, 12sylbi 121 . . . 4  |-  (DECID  ch  ->  ( ch  \/  -.  ( ps  /\  ch ) ) )
148, 13syl 14 . . 3  |-  ( ph  ->  ( ch  \/  -.  ( ps  /\  ch )
) )
15 ordir 818 . . 3  |-  ( ( ( ps  /\  ch )  \/  -.  ( ps  /\  ch ) )  <-> 
( ( ps  \/  -.  ( ps  /\  ch ) )  /\  ( ch  \/  -.  ( ps 
/\  ch ) ) ) )
167, 14, 15sylanbrc 417 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  \/  -.  ( ps  /\  ch )
) )
17 df-dc 836 . 2  |-  (DECID  ( ps 
/\  ch )  <->  ( ( ps  /\  ch )  \/ 
-.  ( ps  /\  ch ) ) )
1816, 17sylibr 134 1  |-  ( ph  -> DECID  ( ps  /\  ch )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836
This theorem is referenced by:  dcan  935  dcfi  7011  nn0n0n1ge2b  9363  gcdsupex  11993  gcdsupcl  11994  gcdaddm  12020  nnwosdc  12075  lcmval  12098  lcmcllem  12102  lcmledvds  12105  prmdc  12165  pclemdc  12323  infpnlem2  12395  nninfdclemcl  12502
  Copyright terms: Public domain W3C validator