| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcand | Unicode version | ||
| Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.) |
| Ref | Expression |
|---|---|
| dcand.1 |
|
| dcand.2 |
|
| Ref | Expression |
|---|---|
| dcand |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcand.1 |
. . . 4
| |
| 2 | df-dc 836 |
. . . . 5
| |
| 3 | id 19 |
. . . . . . 7
| |
| 4 | 3 | intnanrd 933 |
. . . . . 6
|
| 5 | 4 | orim2i 762 |
. . . . 5
|
| 6 | 2, 5 | sylbi 121 |
. . . 4
|
| 7 | 1, 6 | syl 14 |
. . 3
|
| 8 | dcand.2 |
. . . 4
| |
| 9 | df-dc 836 |
. . . . 5
| |
| 10 | id 19 |
. . . . . . 7
| |
| 11 | 10 | intnand 932 |
. . . . . 6
|
| 12 | 11 | orim2i 762 |
. . . . 5
|
| 13 | 9, 12 | sylbi 121 |
. . . 4
|
| 14 | 8, 13 | syl 14 |
. . 3
|
| 15 | ordir 818 |
. . 3
| |
| 16 | 7, 14, 15 | sylanbrc 417 |
. 2
|
| 17 | df-dc 836 |
. 2
| |
| 18 | 16, 17 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: dcan 935 dcfi 7047 nn0n0n1ge2b 9405 gcdsupex 12124 gcdsupcl 12125 gcdaddm 12151 nnwosdc 12206 lcmval 12231 lcmcllem 12235 lcmledvds 12238 prmdc 12298 pclemdc 12457 infpnlem2 12529 nninfdclemcl 12665 |
| Copyright terms: Public domain | W3C validator |