ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcand Unicode version

Theorem dcand 935
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.)
Hypotheses
Ref Expression
dcand.1  |-  ( ph  -> DECID  ps )
dcand.2  |-  ( ph  -> DECID  ch )
Assertion
Ref Expression
dcand  |-  ( ph  -> DECID  ( ps  /\  ch )
)

Proof of Theorem dcand
StepHypRef Expression
1 dcand.1 . . . 4  |-  ( ph  -> DECID  ps )
2 df-dc 837 . . . . 5  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
3 id 19 . . . . . . 7  |-  ( -. 
ps  ->  -.  ps )
43intnanrd 934 . . . . . 6  |-  ( -. 
ps  ->  -.  ( ps  /\ 
ch ) )
54orim2i 763 . . . . 5  |-  ( ( ps  \/  -.  ps )  ->  ( ps  \/  -.  ( ps  /\  ch ) ) )
62, 5sylbi 121 . . . 4  |-  (DECID  ps  ->  ( ps  \/  -.  ( ps  /\  ch ) ) )
71, 6syl 14 . . 3  |-  ( ph  ->  ( ps  \/  -.  ( ps  /\  ch )
) )
8 dcand.2 . . . 4  |-  ( ph  -> DECID  ch )
9 df-dc 837 . . . . 5  |-  (DECID  ch  <->  ( ch  \/  -.  ch ) )
10 id 19 . . . . . . 7  |-  ( -. 
ch  ->  -.  ch )
1110intnand 933 . . . . . 6  |-  ( -. 
ch  ->  -.  ( ps  /\ 
ch ) )
1211orim2i 763 . . . . 5  |-  ( ( ch  \/  -.  ch )  ->  ( ch  \/  -.  ( ps  /\  ch ) ) )
139, 12sylbi 121 . . . 4  |-  (DECID  ch  ->  ( ch  \/  -.  ( ps  /\  ch ) ) )
148, 13syl 14 . . 3  |-  ( ph  ->  ( ch  \/  -.  ( ps  /\  ch )
) )
15 ordir 819 . . 3  |-  ( ( ( ps  /\  ch )  \/  -.  ( ps  /\  ch ) )  <-> 
( ( ps  \/  -.  ( ps  /\  ch ) )  /\  ( ch  \/  -.  ( ps 
/\  ch ) ) ) )
167, 14, 15sylanbrc 417 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  \/  -.  ( ps  /\  ch )
) )
17 df-dc 837 . 2  |-  (DECID  ( ps 
/\  ch )  <->  ( ( ps  /\  ch )  \/ 
-.  ( ps  /\  ch ) ) )
1816, 17sylibr 134 1  |-  ( ph  -> DECID  ( ps  /\  ch )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117  df-dc 837
This theorem is referenced by:  dcan  936  dcfi  7098  nn0n0n1ge2b  9472  fzowrddc  11123  bitsinv1  12348  gcdsupex  12353  gcdsupcl  12354  gcdaddm  12380  nnwosdc  12435  lcmval  12460  lcmcllem  12464  lcmledvds  12467  prmdc  12527  pclemdc  12686  infpnlem2  12758  nninfdclemcl  12894
  Copyright terms: Public domain W3C validator