ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcand Unicode version

Theorem dcand 934
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.)
Hypotheses
Ref Expression
dcand.1  |-  ( ph  -> DECID  ps )
dcand.2  |-  ( ph  -> DECID  ch )
Assertion
Ref Expression
dcand  |-  ( ph  -> DECID  ( ps  /\  ch )
)

Proof of Theorem dcand
StepHypRef Expression
1 dcand.1 . . . 4  |-  ( ph  -> DECID  ps )
2 df-dc 836 . . . . 5  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
3 id 19 . . . . . . 7  |-  ( -. 
ps  ->  -.  ps )
43intnanrd 933 . . . . . 6  |-  ( -. 
ps  ->  -.  ( ps  /\ 
ch ) )
54orim2i 762 . . . . 5  |-  ( ( ps  \/  -.  ps )  ->  ( ps  \/  -.  ( ps  /\  ch ) ) )
62, 5sylbi 121 . . . 4  |-  (DECID  ps  ->  ( ps  \/  -.  ( ps  /\  ch ) ) )
71, 6syl 14 . . 3  |-  ( ph  ->  ( ps  \/  -.  ( ps  /\  ch )
) )
8 dcand.2 . . . 4  |-  ( ph  -> DECID  ch )
9 df-dc 836 . . . . 5  |-  (DECID  ch  <->  ( ch  \/  -.  ch ) )
10 id 19 . . . . . . 7  |-  ( -. 
ch  ->  -.  ch )
1110intnand 932 . . . . . 6  |-  ( -. 
ch  ->  -.  ( ps  /\ 
ch ) )
1211orim2i 762 . . . . 5  |-  ( ( ch  \/  -.  ch )  ->  ( ch  \/  -.  ( ps  /\  ch ) ) )
139, 12sylbi 121 . . . 4  |-  (DECID  ch  ->  ( ch  \/  -.  ( ps  /\  ch ) ) )
148, 13syl 14 . . 3  |-  ( ph  ->  ( ch  \/  -.  ( ps  /\  ch )
) )
15 ordir 818 . . 3  |-  ( ( ( ps  /\  ch )  \/  -.  ( ps  /\  ch ) )  <-> 
( ( ps  \/  -.  ( ps  /\  ch ) )  /\  ( ch  \/  -.  ( ps 
/\  ch ) ) ) )
167, 14, 15sylanbrc 417 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  \/  -.  ( ps  /\  ch )
) )
17 df-dc 836 . 2  |-  (DECID  ( ps 
/\  ch )  <->  ( ( ps  /\  ch )  \/ 
-.  ( ps  /\  ch ) ) )
1816, 17sylibr 134 1  |-  ( ph  -> DECID  ( ps  /\  ch )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836
This theorem is referenced by:  dcan  935  dcfi  7082  nn0n0n1ge2b  9451  bitsinv1  12215  gcdsupex  12220  gcdsupcl  12221  gcdaddm  12247  nnwosdc  12302  lcmval  12327  lcmcllem  12331  lcmledvds  12334  prmdc  12394  pclemdc  12553  infpnlem2  12625  nninfdclemcl  12761
  Copyright terms: Public domain W3C validator