ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcand Unicode version

Theorem dcand 938
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.)
Hypotheses
Ref Expression
dcand.1  |-  ( ph  -> DECID  ps )
dcand.2  |-  ( ph  -> DECID  ch )
Assertion
Ref Expression
dcand  |-  ( ph  -> DECID  ( ps  /\  ch )
)

Proof of Theorem dcand
StepHypRef Expression
1 dcand.1 . . . 4  |-  ( ph  -> DECID  ps )
2 df-dc 840 . . . . 5  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
3 id 19 . . . . . . 7  |-  ( -. 
ps  ->  -.  ps )
43intnanrd 937 . . . . . 6  |-  ( -. 
ps  ->  -.  ( ps  /\ 
ch ) )
54orim2i 766 . . . . 5  |-  ( ( ps  \/  -.  ps )  ->  ( ps  \/  -.  ( ps  /\  ch ) ) )
62, 5sylbi 121 . . . 4  |-  (DECID  ps  ->  ( ps  \/  -.  ( ps  /\  ch ) ) )
71, 6syl 14 . . 3  |-  ( ph  ->  ( ps  \/  -.  ( ps  /\  ch )
) )
8 dcand.2 . . . 4  |-  ( ph  -> DECID  ch )
9 df-dc 840 . . . . 5  |-  (DECID  ch  <->  ( ch  \/  -.  ch ) )
10 id 19 . . . . . . 7  |-  ( -. 
ch  ->  -.  ch )
1110intnand 936 . . . . . 6  |-  ( -. 
ch  ->  -.  ( ps  /\ 
ch ) )
1211orim2i 766 . . . . 5  |-  ( ( ch  \/  -.  ch )  ->  ( ch  \/  -.  ( ps  /\  ch ) ) )
139, 12sylbi 121 . . . 4  |-  (DECID  ch  ->  ( ch  \/  -.  ( ps  /\  ch ) ) )
148, 13syl 14 . . 3  |-  ( ph  ->  ( ch  \/  -.  ( ps  /\  ch )
) )
15 ordir 822 . . 3  |-  ( ( ( ps  /\  ch )  \/  -.  ( ps  /\  ch ) )  <-> 
( ( ps  \/  -.  ( ps  /\  ch ) )  /\  ( ch  \/  -.  ( ps 
/\  ch ) ) ) )
167, 14, 15sylanbrc 417 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  \/  -.  ( ps  /\  ch )
) )
17 df-dc 840 . 2  |-  (DECID  ( ps 
/\  ch )  <->  ( ( ps  /\  ch )  \/ 
-.  ( ps  /\  ch ) ) )
1816, 17sylibr 134 1  |-  ( ph  -> DECID  ( ps  /\  ch )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840
This theorem is referenced by:  dcan  939  dcfi  7144  nn0n0n1ge2b  9522  fzowrddc  11174  bitsinv1  12468  gcdsupex  12473  gcdsupcl  12474  gcdaddm  12500  nnwosdc  12555  lcmval  12580  lcmcllem  12584  lcmledvds  12587  prmdc  12647  pclemdc  12806  infpnlem2  12878  nninfdclemcl  13014
  Copyright terms: Public domain W3C validator