ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcand GIF version

Theorem dcand 935
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.)
Hypotheses
Ref Expression
dcand.1 (𝜑DECID 𝜓)
dcand.2 (𝜑DECID 𝜒)
Assertion
Ref Expression
dcand (𝜑DECID (𝜓𝜒))

Proof of Theorem dcand
StepHypRef Expression
1 dcand.1 . . . 4 (𝜑DECID 𝜓)
2 df-dc 837 . . . . 5 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
3 id 19 . . . . . . 7 𝜓 → ¬ 𝜓)
43intnanrd 934 . . . . . 6 𝜓 → ¬ (𝜓𝜒))
54orim2i 763 . . . . 5 ((𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ (𝜓𝜒)))
62, 5sylbi 121 . . . 4 (DECID 𝜓 → (𝜓 ∨ ¬ (𝜓𝜒)))
71, 6syl 14 . . 3 (𝜑 → (𝜓 ∨ ¬ (𝜓𝜒)))
8 dcand.2 . . . 4 (𝜑DECID 𝜒)
9 df-dc 837 . . . . 5 (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒))
10 id 19 . . . . . . 7 𝜒 → ¬ 𝜒)
1110intnand 933 . . . . . 6 𝜒 → ¬ (𝜓𝜒))
1211orim2i 763 . . . . 5 ((𝜒 ∨ ¬ 𝜒) → (𝜒 ∨ ¬ (𝜓𝜒)))
139, 12sylbi 121 . . . 4 (DECID 𝜒 → (𝜒 ∨ ¬ (𝜓𝜒)))
148, 13syl 14 . . 3 (𝜑 → (𝜒 ∨ ¬ (𝜓𝜒)))
15 ordir 819 . . 3 (((𝜓𝜒) ∨ ¬ (𝜓𝜒)) ↔ ((𝜓 ∨ ¬ (𝜓𝜒)) ∧ (𝜒 ∨ ¬ (𝜓𝜒))))
167, 14, 15sylanbrc 417 . 2 (𝜑 → ((𝜓𝜒) ∨ ¬ (𝜓𝜒)))
17 df-dc 837 . 2 (DECID (𝜓𝜒) ↔ ((𝜓𝜒) ∨ ¬ (𝜓𝜒)))
1816, 17sylibr 134 1 (𝜑DECID (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117  df-dc 837
This theorem is referenced by:  dcan  936  dcfi  7090  nn0n0n1ge2b  9459  fzowrddc  11108  bitsinv1  12317  gcdsupex  12322  gcdsupcl  12323  gcdaddm  12349  nnwosdc  12404  lcmval  12429  lcmcllem  12433  lcmledvds  12436  prmdc  12496  pclemdc  12655  infpnlem2  12727  nninfdclemcl  12863
  Copyright terms: Public domain W3C validator