ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcand GIF version

Theorem dcand 937
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.)
Hypotheses
Ref Expression
dcand.1 (𝜑DECID 𝜓)
dcand.2 (𝜑DECID 𝜒)
Assertion
Ref Expression
dcand (𝜑DECID (𝜓𝜒))

Proof of Theorem dcand
StepHypRef Expression
1 dcand.1 . . . 4 (𝜑DECID 𝜓)
2 df-dc 839 . . . . 5 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
3 id 19 . . . . . . 7 𝜓 → ¬ 𝜓)
43intnanrd 936 . . . . . 6 𝜓 → ¬ (𝜓𝜒))
54orim2i 765 . . . . 5 ((𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ (𝜓𝜒)))
62, 5sylbi 121 . . . 4 (DECID 𝜓 → (𝜓 ∨ ¬ (𝜓𝜒)))
71, 6syl 14 . . 3 (𝜑 → (𝜓 ∨ ¬ (𝜓𝜒)))
8 dcand.2 . . . 4 (𝜑DECID 𝜒)
9 df-dc 839 . . . . 5 (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒))
10 id 19 . . . . . . 7 𝜒 → ¬ 𝜒)
1110intnand 935 . . . . . 6 𝜒 → ¬ (𝜓𝜒))
1211orim2i 765 . . . . 5 ((𝜒 ∨ ¬ 𝜒) → (𝜒 ∨ ¬ (𝜓𝜒)))
139, 12sylbi 121 . . . 4 (DECID 𝜒 → (𝜒 ∨ ¬ (𝜓𝜒)))
148, 13syl 14 . . 3 (𝜑 → (𝜒 ∨ ¬ (𝜓𝜒)))
15 ordir 821 . . 3 (((𝜓𝜒) ∨ ¬ (𝜓𝜒)) ↔ ((𝜓 ∨ ¬ (𝜓𝜒)) ∧ (𝜒 ∨ ¬ (𝜓𝜒))))
167, 14, 15sylanbrc 417 . 2 (𝜑 → ((𝜓𝜒) ∨ ¬ (𝜓𝜒)))
17 df-dc 839 . 2 (DECID (𝜓𝜒) ↔ ((𝜓𝜒) ∨ ¬ (𝜓𝜒)))
1816, 17sylibr 134 1 (𝜑DECID (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 712  DECID wdc 838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713
This theorem depends on definitions:  df-bi 117  df-dc 839
This theorem is referenced by:  dcan  938  dcfi  7116  nn0n0n1ge2b  9494  fzowrddc  11145  bitsinv1  12439  gcdsupex  12444  gcdsupcl  12445  gcdaddm  12471  nnwosdc  12526  lcmval  12551  lcmcllem  12555  lcmledvds  12558  prmdc  12618  pclemdc  12777  infpnlem2  12849  nninfdclemcl  12985
  Copyright terms: Public domain W3C validator