| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcand | GIF version | ||
| Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.) |
| Ref | Expression |
|---|---|
| dcand.1 | ⊢ (𝜑 → DECID 𝜓) |
| dcand.2 | ⊢ (𝜑 → DECID 𝜒) |
| Ref | Expression |
|---|---|
| dcand | ⊢ (𝜑 → DECID (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcand.1 | . . . 4 ⊢ (𝜑 → DECID 𝜓) | |
| 2 | df-dc 837 | . . . . 5 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 3 | id 19 | . . . . . . 7 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 4 | 3 | intnanrd 934 | . . . . . 6 ⊢ (¬ 𝜓 → ¬ (𝜓 ∧ 𝜒)) |
| 5 | 4 | orim2i 763 | . . . . 5 ⊢ ((𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 6 | 2, 5 | sylbi 121 | . . . 4 ⊢ (DECID 𝜓 → (𝜓 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 7 | 1, 6 | syl 14 | . . 3 ⊢ (𝜑 → (𝜓 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 8 | dcand.2 | . . . 4 ⊢ (𝜑 → DECID 𝜒) | |
| 9 | df-dc 837 | . . . . 5 ⊢ (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒)) | |
| 10 | id 19 | . . . . . . 7 ⊢ (¬ 𝜒 → ¬ 𝜒) | |
| 11 | 10 | intnand 933 | . . . . . 6 ⊢ (¬ 𝜒 → ¬ (𝜓 ∧ 𝜒)) |
| 12 | 11 | orim2i 763 | . . . . 5 ⊢ ((𝜒 ∨ ¬ 𝜒) → (𝜒 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 13 | 9, 12 | sylbi 121 | . . . 4 ⊢ (DECID 𝜒 → (𝜒 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 14 | 8, 13 | syl 14 | . . 3 ⊢ (𝜑 → (𝜒 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 15 | ordir 819 | . . 3 ⊢ (((𝜓 ∧ 𝜒) ∨ ¬ (𝜓 ∧ 𝜒)) ↔ ((𝜓 ∨ ¬ (𝜓 ∧ 𝜒)) ∧ (𝜒 ∨ ¬ (𝜓 ∧ 𝜒)))) | |
| 16 | 7, 14, 15 | sylanbrc 417 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∨ ¬ (𝜓 ∧ 𝜒))) |
| 17 | df-dc 837 | . 2 ⊢ (DECID (𝜓 ∧ 𝜒) ↔ ((𝜓 ∧ 𝜒) ∨ ¬ (𝜓 ∧ 𝜒))) | |
| 18 | 16, 17 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-dc 837 |
| This theorem is referenced by: dcan 936 dcfi 7090 nn0n0n1ge2b 9459 fzowrddc 11108 bitsinv1 12317 gcdsupex 12322 gcdsupcl 12323 gcdaddm 12349 nnwosdc 12404 lcmval 12429 lcmcllem 12433 lcmledvds 12436 prmdc 12496 pclemdc 12655 infpnlem2 12727 nninfdclemcl 12863 |
| Copyright terms: Public domain | W3C validator |