ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcand GIF version

Theorem dcand 938
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.)
Hypotheses
Ref Expression
dcand.1 (𝜑DECID 𝜓)
dcand.2 (𝜑DECID 𝜒)
Assertion
Ref Expression
dcand (𝜑DECID (𝜓𝜒))

Proof of Theorem dcand
StepHypRef Expression
1 dcand.1 . . . 4 (𝜑DECID 𝜓)
2 df-dc 840 . . . . 5 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
3 id 19 . . . . . . 7 𝜓 → ¬ 𝜓)
43intnanrd 937 . . . . . 6 𝜓 → ¬ (𝜓𝜒))
54orim2i 766 . . . . 5 ((𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ (𝜓𝜒)))
62, 5sylbi 121 . . . 4 (DECID 𝜓 → (𝜓 ∨ ¬ (𝜓𝜒)))
71, 6syl 14 . . 3 (𝜑 → (𝜓 ∨ ¬ (𝜓𝜒)))
8 dcand.2 . . . 4 (𝜑DECID 𝜒)
9 df-dc 840 . . . . 5 (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒))
10 id 19 . . . . . . 7 𝜒 → ¬ 𝜒)
1110intnand 936 . . . . . 6 𝜒 → ¬ (𝜓𝜒))
1211orim2i 766 . . . . 5 ((𝜒 ∨ ¬ 𝜒) → (𝜒 ∨ ¬ (𝜓𝜒)))
139, 12sylbi 121 . . . 4 (DECID 𝜒 → (𝜒 ∨ ¬ (𝜓𝜒)))
148, 13syl 14 . . 3 (𝜑 → (𝜒 ∨ ¬ (𝜓𝜒)))
15 ordir 822 . . 3 (((𝜓𝜒) ∨ ¬ (𝜓𝜒)) ↔ ((𝜓 ∨ ¬ (𝜓𝜒)) ∧ (𝜒 ∨ ¬ (𝜓𝜒))))
167, 14, 15sylanbrc 417 . 2 (𝜑 → ((𝜓𝜒) ∨ ¬ (𝜓𝜒)))
17 df-dc 840 . 2 (DECID (𝜓𝜒) ↔ ((𝜓𝜒) ∨ ¬ (𝜓𝜒)))
1816, 17sylibr 134 1 (𝜑DECID (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840
This theorem is referenced by:  dcan  939  dcfi  7156  nn0n0n1ge2b  9534  fzowrddc  11187  bitsinv1  12481  gcdsupex  12486  gcdsupcl  12487  gcdaddm  12513  nnwosdc  12568  lcmval  12593  lcmcllem  12597  lcmledvds  12600  prmdc  12660  pclemdc  12819  infpnlem2  12891  nninfdclemcl  13027
  Copyright terms: Public domain W3C validator