| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dcand | GIF version | ||
| Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.) | 
| Ref | Expression | 
|---|---|
| dcand.1 | ⊢ (𝜑 → DECID 𝜓) | 
| dcand.2 | ⊢ (𝜑 → DECID 𝜒) | 
| Ref | Expression | 
|---|---|
| dcand | ⊢ (𝜑 → DECID (𝜓 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dcand.1 | . . . 4 ⊢ (𝜑 → DECID 𝜓) | |
| 2 | df-dc 836 | . . . . 5 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 3 | id 19 | . . . . . . 7 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 4 | 3 | intnanrd 933 | . . . . . 6 ⊢ (¬ 𝜓 → ¬ (𝜓 ∧ 𝜒)) | 
| 5 | 4 | orim2i 762 | . . . . 5 ⊢ ((𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ (𝜓 ∧ 𝜒))) | 
| 6 | 2, 5 | sylbi 121 | . . . 4 ⊢ (DECID 𝜓 → (𝜓 ∨ ¬ (𝜓 ∧ 𝜒))) | 
| 7 | 1, 6 | syl 14 | . . 3 ⊢ (𝜑 → (𝜓 ∨ ¬ (𝜓 ∧ 𝜒))) | 
| 8 | dcand.2 | . . . 4 ⊢ (𝜑 → DECID 𝜒) | |
| 9 | df-dc 836 | . . . . 5 ⊢ (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒)) | |
| 10 | id 19 | . . . . . . 7 ⊢ (¬ 𝜒 → ¬ 𝜒) | |
| 11 | 10 | intnand 932 | . . . . . 6 ⊢ (¬ 𝜒 → ¬ (𝜓 ∧ 𝜒)) | 
| 12 | 11 | orim2i 762 | . . . . 5 ⊢ ((𝜒 ∨ ¬ 𝜒) → (𝜒 ∨ ¬ (𝜓 ∧ 𝜒))) | 
| 13 | 9, 12 | sylbi 121 | . . . 4 ⊢ (DECID 𝜒 → (𝜒 ∨ ¬ (𝜓 ∧ 𝜒))) | 
| 14 | 8, 13 | syl 14 | . . 3 ⊢ (𝜑 → (𝜒 ∨ ¬ (𝜓 ∧ 𝜒))) | 
| 15 | ordir 818 | . . 3 ⊢ (((𝜓 ∧ 𝜒) ∨ ¬ (𝜓 ∧ 𝜒)) ↔ ((𝜓 ∨ ¬ (𝜓 ∧ 𝜒)) ∧ (𝜒 ∨ ¬ (𝜓 ∧ 𝜒)))) | |
| 16 | 7, 14, 15 | sylanbrc 417 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∨ ¬ (𝜓 ∧ 𝜒))) | 
| 17 | df-dc 836 | . 2 ⊢ (DECID (𝜓 ∧ 𝜒) ↔ ((𝜓 ∧ 𝜒) ∨ ¬ (𝜓 ∧ 𝜒))) | |
| 18 | 16, 17 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝜓 ∧ 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 | 
| This theorem is referenced by: dcan 935 dcfi 7047 nn0n0n1ge2b 9405 gcdsupex 12124 gcdsupcl 12125 gcdaddm 12151 nnwosdc 12206 lcmval 12231 lcmcllem 12235 lcmledvds 12238 prmdc 12298 pclemdc 12457 infpnlem2 12529 nninfdclemcl 12665 | 
| Copyright terms: Public domain | W3C validator |