ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcand GIF version

Theorem dcand 934
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.)
Hypotheses
Ref Expression
dcand.1 (𝜑DECID 𝜓)
dcand.2 (𝜑DECID 𝜒)
Assertion
Ref Expression
dcand (𝜑DECID (𝜓𝜒))

Proof of Theorem dcand
StepHypRef Expression
1 dcand.1 . . . 4 (𝜑DECID 𝜓)
2 df-dc 836 . . . . 5 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
3 id 19 . . . . . . 7 𝜓 → ¬ 𝜓)
43intnanrd 933 . . . . . 6 𝜓 → ¬ (𝜓𝜒))
54orim2i 762 . . . . 5 ((𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ (𝜓𝜒)))
62, 5sylbi 121 . . . 4 (DECID 𝜓 → (𝜓 ∨ ¬ (𝜓𝜒)))
71, 6syl 14 . . 3 (𝜑 → (𝜓 ∨ ¬ (𝜓𝜒)))
8 dcand.2 . . . 4 (𝜑DECID 𝜒)
9 df-dc 836 . . . . 5 (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒))
10 id 19 . . . . . . 7 𝜒 → ¬ 𝜒)
1110intnand 932 . . . . . 6 𝜒 → ¬ (𝜓𝜒))
1211orim2i 762 . . . . 5 ((𝜒 ∨ ¬ 𝜒) → (𝜒 ∨ ¬ (𝜓𝜒)))
139, 12sylbi 121 . . . 4 (DECID 𝜒 → (𝜒 ∨ ¬ (𝜓𝜒)))
148, 13syl 14 . . 3 (𝜑 → (𝜒 ∨ ¬ (𝜓𝜒)))
15 ordir 818 . . 3 (((𝜓𝜒) ∨ ¬ (𝜓𝜒)) ↔ ((𝜓 ∨ ¬ (𝜓𝜒)) ∧ (𝜒 ∨ ¬ (𝜓𝜒))))
167, 14, 15sylanbrc 417 . 2 (𝜑 → ((𝜓𝜒) ∨ ¬ (𝜓𝜒)))
17 df-dc 836 . 2 (DECID (𝜓𝜒) ↔ ((𝜓𝜒) ∨ ¬ (𝜓𝜒)))
1816, 17sylibr 134 1 (𝜑DECID (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836
This theorem is referenced by:  dcan  935  dcfi  7056  nn0n0n1ge2b  9424  bitsinv1  12146  gcdsupex  12151  gcdsupcl  12152  gcdaddm  12178  nnwosdc  12233  lcmval  12258  lcmcllem  12262  lcmledvds  12265  prmdc  12325  pclemdc  12484  infpnlem2  12556  nninfdclemcl  12692
  Copyright terms: Public domain W3C validator