| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcand | GIF version | ||
| Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.) |
| Ref | Expression |
|---|---|
| dcand.1 | ⊢ (𝜑 → DECID 𝜓) |
| dcand.2 | ⊢ (𝜑 → DECID 𝜒) |
| Ref | Expression |
|---|---|
| dcand | ⊢ (𝜑 → DECID (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcand.1 | . . . 4 ⊢ (𝜑 → DECID 𝜓) | |
| 2 | df-dc 839 | . . . . 5 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 3 | id 19 | . . . . . . 7 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 4 | 3 | intnanrd 936 | . . . . . 6 ⊢ (¬ 𝜓 → ¬ (𝜓 ∧ 𝜒)) |
| 5 | 4 | orim2i 765 | . . . . 5 ⊢ ((𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 6 | 2, 5 | sylbi 121 | . . . 4 ⊢ (DECID 𝜓 → (𝜓 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 7 | 1, 6 | syl 14 | . . 3 ⊢ (𝜑 → (𝜓 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 8 | dcand.2 | . . . 4 ⊢ (𝜑 → DECID 𝜒) | |
| 9 | df-dc 839 | . . . . 5 ⊢ (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒)) | |
| 10 | id 19 | . . . . . . 7 ⊢ (¬ 𝜒 → ¬ 𝜒) | |
| 11 | 10 | intnand 935 | . . . . . 6 ⊢ (¬ 𝜒 → ¬ (𝜓 ∧ 𝜒)) |
| 12 | 11 | orim2i 765 | . . . . 5 ⊢ ((𝜒 ∨ ¬ 𝜒) → (𝜒 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 13 | 9, 12 | sylbi 121 | . . . 4 ⊢ (DECID 𝜒 → (𝜒 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 14 | 8, 13 | syl 14 | . . 3 ⊢ (𝜑 → (𝜒 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 15 | ordir 821 | . . 3 ⊢ (((𝜓 ∧ 𝜒) ∨ ¬ (𝜓 ∧ 𝜒)) ↔ ((𝜓 ∨ ¬ (𝜓 ∧ 𝜒)) ∧ (𝜒 ∨ ¬ (𝜓 ∧ 𝜒)))) | |
| 16 | 7, 14, 15 | sylanbrc 417 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∨ ¬ (𝜓 ∧ 𝜒))) |
| 17 | df-dc 839 | . 2 ⊢ (DECID (𝜓 ∧ 𝜒) ↔ ((𝜓 ∧ 𝜒) ∨ ¬ (𝜓 ∧ 𝜒))) | |
| 18 | 16, 17 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 712 DECID wdc 838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 |
| This theorem depends on definitions: df-bi 117 df-dc 839 |
| This theorem is referenced by: dcan 938 dcfi 7116 nn0n0n1ge2b 9494 fzowrddc 11145 bitsinv1 12439 gcdsupex 12444 gcdsupcl 12445 gcdaddm 12471 nnwosdc 12526 lcmval 12551 lcmcllem 12555 lcmledvds 12558 prmdc 12618 pclemdc 12777 infpnlem2 12849 nninfdclemcl 12985 |
| Copyright terms: Public domain | W3C validator |