ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcand GIF version

Theorem dcand 934
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.)
Hypotheses
Ref Expression
dcand.1 (𝜑DECID 𝜓)
dcand.2 (𝜑DECID 𝜒)
Assertion
Ref Expression
dcand (𝜑DECID (𝜓𝜒))

Proof of Theorem dcand
StepHypRef Expression
1 dcand.1 . . . 4 (𝜑DECID 𝜓)
2 df-dc 836 . . . . 5 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
3 id 19 . . . . . . 7 𝜓 → ¬ 𝜓)
43intnanrd 933 . . . . . 6 𝜓 → ¬ (𝜓𝜒))
54orim2i 762 . . . . 5 ((𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ (𝜓𝜒)))
62, 5sylbi 121 . . . 4 (DECID 𝜓 → (𝜓 ∨ ¬ (𝜓𝜒)))
71, 6syl 14 . . 3 (𝜑 → (𝜓 ∨ ¬ (𝜓𝜒)))
8 dcand.2 . . . 4 (𝜑DECID 𝜒)
9 df-dc 836 . . . . 5 (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒))
10 id 19 . . . . . . 7 𝜒 → ¬ 𝜒)
1110intnand 932 . . . . . 6 𝜒 → ¬ (𝜓𝜒))
1211orim2i 762 . . . . 5 ((𝜒 ∨ ¬ 𝜒) → (𝜒 ∨ ¬ (𝜓𝜒)))
139, 12sylbi 121 . . . 4 (DECID 𝜒 → (𝜒 ∨ ¬ (𝜓𝜒)))
148, 13syl 14 . . 3 (𝜑 → (𝜒 ∨ ¬ (𝜓𝜒)))
15 ordir 818 . . 3 (((𝜓𝜒) ∨ ¬ (𝜓𝜒)) ↔ ((𝜓 ∨ ¬ (𝜓𝜒)) ∧ (𝜒 ∨ ¬ (𝜓𝜒))))
167, 14, 15sylanbrc 417 . 2 (𝜑 → ((𝜓𝜒) ∨ ¬ (𝜓𝜒)))
17 df-dc 836 . 2 (DECID (𝜓𝜒) ↔ ((𝜓𝜒) ∨ ¬ (𝜓𝜒)))
1816, 17sylibr 134 1 (𝜑DECID (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836
This theorem is referenced by:  dcan  935  dcfi  7014  nn0n0n1ge2b  9367  gcdsupex  11999  gcdsupcl  12000  gcdaddm  12026  nnwosdc  12081  lcmval  12106  lcmcllem  12110  lcmledvds  12113  prmdc  12173  pclemdc  12331  infpnlem2  12403  nninfdclemcl  12510
  Copyright terms: Public domain W3C validator