| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcand | GIF version | ||
| Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.) |
| Ref | Expression |
|---|---|
| dcand.1 | ⊢ (𝜑 → DECID 𝜓) |
| dcand.2 | ⊢ (𝜑 → DECID 𝜒) |
| Ref | Expression |
|---|---|
| dcand | ⊢ (𝜑 → DECID (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcand.1 | . . . 4 ⊢ (𝜑 → DECID 𝜓) | |
| 2 | df-dc 840 | . . . . 5 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 3 | id 19 | . . . . . . 7 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 4 | 3 | intnanrd 937 | . . . . . 6 ⊢ (¬ 𝜓 → ¬ (𝜓 ∧ 𝜒)) |
| 5 | 4 | orim2i 766 | . . . . 5 ⊢ ((𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 6 | 2, 5 | sylbi 121 | . . . 4 ⊢ (DECID 𝜓 → (𝜓 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 7 | 1, 6 | syl 14 | . . 3 ⊢ (𝜑 → (𝜓 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 8 | dcand.2 | . . . 4 ⊢ (𝜑 → DECID 𝜒) | |
| 9 | df-dc 840 | . . . . 5 ⊢ (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒)) | |
| 10 | id 19 | . . . . . . 7 ⊢ (¬ 𝜒 → ¬ 𝜒) | |
| 11 | 10 | intnand 936 | . . . . . 6 ⊢ (¬ 𝜒 → ¬ (𝜓 ∧ 𝜒)) |
| 12 | 11 | orim2i 766 | . . . . 5 ⊢ ((𝜒 ∨ ¬ 𝜒) → (𝜒 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 13 | 9, 12 | sylbi 121 | . . . 4 ⊢ (DECID 𝜒 → (𝜒 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 14 | 8, 13 | syl 14 | . . 3 ⊢ (𝜑 → (𝜒 ∨ ¬ (𝜓 ∧ 𝜒))) |
| 15 | ordir 822 | . . 3 ⊢ (((𝜓 ∧ 𝜒) ∨ ¬ (𝜓 ∧ 𝜒)) ↔ ((𝜓 ∨ ¬ (𝜓 ∧ 𝜒)) ∧ (𝜒 ∨ ¬ (𝜓 ∧ 𝜒)))) | |
| 16 | 7, 14, 15 | sylanbrc 417 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∨ ¬ (𝜓 ∧ 𝜒))) |
| 17 | df-dc 840 | . 2 ⊢ (DECID (𝜓 ∧ 𝜒) ↔ ((𝜓 ∧ 𝜒) ∨ ¬ (𝜓 ∧ 𝜒))) | |
| 18 | 16, 17 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 DECID wdc 839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-dc 840 |
| This theorem is referenced by: dcan 939 dcfi 7156 nn0n0n1ge2b 9534 fzowrddc 11187 bitsinv1 12481 gcdsupex 12486 gcdsupcl 12487 gcdaddm 12513 nnwosdc 12568 lcmval 12593 lcmcllem 12597 lcmledvds 12600 prmdc 12660 pclemdc 12819 infpnlem2 12891 nninfdclemcl 13027 |
| Copyright terms: Public domain | W3C validator |