ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpnlem2 Unicode version

Theorem infpnlem2 12358
Description: Lemma for infpn 12359. For any positive integer  N, there exists a prime number  j greater than  N. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1  |-  K  =  ( ( ! `  N )  +  1 )
Assertion
Ref Expression
infpnlem2  |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
Distinct variable groups:    j, k, N   
j, K, k

Proof of Theorem infpnlem2
StepHypRef Expression
1 infpnlem.1 . . . . 5  |-  K  =  ( ( ! `  N )  +  1 )
2 nnnn0 9183 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
32faccld 10716 . . . . . 6  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN )
43peano2nnd 8934 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  N
)  +  1 )  e.  NN )
51, 4eqeltrid 2264 . . . 4  |-  ( N  e.  NN  ->  K  e.  NN )
63nnge1d 8962 . . . . . 6  |-  ( N  e.  NN  ->  1  <_  ( ! `  N
) )
7 1nn 8930 . . . . . . 7  |-  1  e.  NN
8 nnleltp1 9312 . . . . . . 7  |-  ( ( 1  e.  NN  /\  ( ! `  N )  e.  NN )  -> 
( 1  <_  ( ! `  N )  <->  1  <  ( ( ! `
 N )  +  1 ) ) )
97, 3, 8sylancr 414 . . . . . 6  |-  ( N  e.  NN  ->  (
1  <_  ( ! `  N )  <->  1  <  ( ( ! `  N
)  +  1 ) ) )
106, 9mpbid 147 . . . . 5  |-  ( N  e.  NN  ->  1  <  ( ( ! `  N )  +  1 ) )
1110, 1breqtrrdi 4046 . . . 4  |-  ( N  e.  NN  ->  1  <  K )
12 nncn 8927 . . . . . . 7  |-  ( K  e.  NN  ->  K  e.  CC )
13 nnap0 8948 . . . . . . 7  |-  ( K  e.  NN  ->  K #  0 )
1412, 13jca 306 . . . . . 6  |-  ( K  e.  NN  ->  ( K  e.  CC  /\  K #  0 ) )
15 dividap 8658 . . . . . 6  |-  ( ( K  e.  CC  /\  K #  0 )  ->  ( K  /  K )  =  1 )
165, 14, 153syl 17 . . . . 5  |-  ( N  e.  NN  ->  ( K  /  K )  =  1 )
1716, 7eqeltrdi 2268 . . . 4  |-  ( N  e.  NN  ->  ( K  /  K )  e.  NN )
18 breq2 4008 . . . . . 6  |-  ( j  =  K  ->  (
1  <  j  <->  1  <  K ) )
19 oveq2 5883 . . . . . . 7  |-  ( j  =  K  ->  ( K  /  j )  =  ( K  /  K
) )
2019eleq1d 2246 . . . . . 6  |-  ( j  =  K  ->  (
( K  /  j
)  e.  NN  <->  ( K  /  K )  e.  NN ) )
2118, 20anbi12d 473 . . . . 5  |-  ( j  =  K  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  <-> 
( 1  <  K  /\  ( K  /  K
)  e.  NN ) ) )
2221rspcev 2842 . . . 4  |-  ( ( K  e.  NN  /\  ( 1  <  K  /\  ( K  /  K
)  e.  NN ) )  ->  E. j  e.  NN  ( 1  < 
j  /\  ( K  /  j )  e.  NN ) )
235, 11, 17, 22syl12anc 1236 . . 3  |-  ( N  e.  NN  ->  E. j  e.  NN  ( 1  < 
j  /\  ( K  /  j )  e.  NN ) )
24 1zzd 9280 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  1  e.  ZZ )
25 nnz 9272 . . . . . . 7  |-  ( j  e.  NN  ->  j  e.  ZZ )
2625adantl 277 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  ZZ )
27 zdclt 9330 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  j  e.  ZZ )  -> DECID  1  <  j )
2824, 26, 27syl2anc 411 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  1  <  j )
29 simpr 110 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  NN )
305adantr 276 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  K  e.  NN )
3130nnzd 9374 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  K  e.  ZZ )
32 dvdsdc 11805 . . . . . . 7  |-  ( ( j  e.  NN  /\  K  e.  ZZ )  -> DECID  j 
||  K )
3329, 31, 32syl2anc 411 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  j 
||  K )
34 nndivdvds 11803 . . . . . . . 8  |-  ( ( K  e.  NN  /\  j  e.  NN )  ->  ( j  ||  K  <->  ( K  /  j )  e.  NN ) )
3534dcbid 838 . . . . . . 7  |-  ( ( K  e.  NN  /\  j  e.  NN )  ->  (DECID  j  ||  K  <-> DECID  ( K  /  j
)  e.  NN ) )
365, 35sylan 283 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (DECID  j  ||  K  <-> DECID  ( K  /  j
)  e.  NN ) )
3733, 36mpbid 147 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  ( K  /  j )  e.  NN )
38 dcan2 934 . . . . 5  |-  (DECID  1  < 
j  ->  (DECID  ( K  /  j )  e.  NN  -> DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) ) )
3928, 37, 38sylc 62 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) )
4039ralrimiva 2550 . . 3  |-  ( N  e.  NN  ->  A. j  e.  NN DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) )
41 breq2 4008 . . . . 5  |-  ( j  =  k  ->  (
1  <  j  <->  1  <  k ) )
42 oveq2 5883 . . . . . 6  |-  ( j  =  k  ->  ( K  /  j )  =  ( K  /  k
) )
4342eleq1d 2246 . . . . 5  |-  ( j  =  k  ->  (
( K  /  j
)  e.  NN  <->  ( K  /  k )  e.  NN ) )
4441, 43anbi12d 473 . . . 4  |-  ( j  =  k  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  <-> 
( 1  <  k  /\  ( K  /  k
)  e.  NN ) ) )
4544nnwosdc 12040 . . 3  |-  ( ( E. j  e.  NN  ( 1  <  j  /\  ( K  /  j
)  e.  NN )  /\  A. j  e.  NN DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) )  ->  E. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) ) )
4623, 40, 45syl2anc 411 . 2  |-  ( N  e.  NN  ->  E. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) ) )
471infpnlem1 12357 . . 3  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) )  ->  ( N  <  j  /\  A. k  e.  NN  (
( j  /  k
)  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) ) )
4847reximdva 2579 . 2  |-  ( N  e.  NN  ->  ( E. j  e.  NN  ( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) )  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) ) )
4946, 48mpd 13 1  |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4004   ` cfv 5217  (class class class)co 5875   CCcc 7809   0cc0 7811   1c1 7812    + caddc 7814    < clt 7992    <_ cle 7993   # cap 8538    / cdiv 8629   NNcn 8919   ZZcz 9253   !cfa 10705    || cdvds 11794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-fl 10270  df-mod 10323  df-seqfrec 10446  df-fac 10706  df-dvds 11795
This theorem is referenced by:  infpn  12359
  Copyright terms: Public domain W3C validator