ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpnlem2 Unicode version

Theorem infpnlem2 12392
Description: Lemma for infpn 12393. For any positive integer  N, there exists a prime number  j greater than  N. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1  |-  K  =  ( ( ! `  N )  +  1 )
Assertion
Ref Expression
infpnlem2  |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
Distinct variable groups:    j, k, N   
j, K, k

Proof of Theorem infpnlem2
StepHypRef Expression
1 infpnlem.1 . . . . 5  |-  K  =  ( ( ! `  N )  +  1 )
2 nnnn0 9213 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
32faccld 10748 . . . . . 6  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN )
43peano2nnd 8964 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  N
)  +  1 )  e.  NN )
51, 4eqeltrid 2276 . . . 4  |-  ( N  e.  NN  ->  K  e.  NN )
63nnge1d 8992 . . . . . 6  |-  ( N  e.  NN  ->  1  <_  ( ! `  N
) )
7 1nn 8960 . . . . . . 7  |-  1  e.  NN
8 nnleltp1 9342 . . . . . . 7  |-  ( ( 1  e.  NN  /\  ( ! `  N )  e.  NN )  -> 
( 1  <_  ( ! `  N )  <->  1  <  ( ( ! `
 N )  +  1 ) ) )
97, 3, 8sylancr 414 . . . . . 6  |-  ( N  e.  NN  ->  (
1  <_  ( ! `  N )  <->  1  <  ( ( ! `  N
)  +  1 ) ) )
106, 9mpbid 147 . . . . 5  |-  ( N  e.  NN  ->  1  <  ( ( ! `  N )  +  1 ) )
1110, 1breqtrrdi 4060 . . . 4  |-  ( N  e.  NN  ->  1  <  K )
12 nncn 8957 . . . . . . 7  |-  ( K  e.  NN  ->  K  e.  CC )
13 nnap0 8978 . . . . . . 7  |-  ( K  e.  NN  ->  K #  0 )
1412, 13jca 306 . . . . . 6  |-  ( K  e.  NN  ->  ( K  e.  CC  /\  K #  0 ) )
15 dividap 8688 . . . . . 6  |-  ( ( K  e.  CC  /\  K #  0 )  ->  ( K  /  K )  =  1 )
165, 14, 153syl 17 . . . . 5  |-  ( N  e.  NN  ->  ( K  /  K )  =  1 )
1716, 7eqeltrdi 2280 . . . 4  |-  ( N  e.  NN  ->  ( K  /  K )  e.  NN )
18 breq2 4022 . . . . . 6  |-  ( j  =  K  ->  (
1  <  j  <->  1  <  K ) )
19 oveq2 5904 . . . . . . 7  |-  ( j  =  K  ->  ( K  /  j )  =  ( K  /  K
) )
2019eleq1d 2258 . . . . . 6  |-  ( j  =  K  ->  (
( K  /  j
)  e.  NN  <->  ( K  /  K )  e.  NN ) )
2118, 20anbi12d 473 . . . . 5  |-  ( j  =  K  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  <-> 
( 1  <  K  /\  ( K  /  K
)  e.  NN ) ) )
2221rspcev 2856 . . . 4  |-  ( ( K  e.  NN  /\  ( 1  <  K  /\  ( K  /  K
)  e.  NN ) )  ->  E. j  e.  NN  ( 1  < 
j  /\  ( K  /  j )  e.  NN ) )
235, 11, 17, 22syl12anc 1247 . . 3  |-  ( N  e.  NN  ->  E. j  e.  NN  ( 1  < 
j  /\  ( K  /  j )  e.  NN ) )
24 1zzd 9310 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  1  e.  ZZ )
25 nnz 9302 . . . . . . 7  |-  ( j  e.  NN  ->  j  e.  ZZ )
2625adantl 277 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  ZZ )
27 zdclt 9360 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  j  e.  ZZ )  -> DECID  1  <  j )
2824, 26, 27syl2anc 411 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  1  <  j )
29 simpr 110 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  NN )
305adantr 276 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  K  e.  NN )
3130nnzd 9404 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  K  e.  ZZ )
32 dvdsdc 11837 . . . . . . 7  |-  ( ( j  e.  NN  /\  K  e.  ZZ )  -> DECID  j 
||  K )
3329, 31, 32syl2anc 411 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  j 
||  K )
34 nndivdvds 11835 . . . . . . . 8  |-  ( ( K  e.  NN  /\  j  e.  NN )  ->  ( j  ||  K  <->  ( K  /  j )  e.  NN ) )
3534dcbid 839 . . . . . . 7  |-  ( ( K  e.  NN  /\  j  e.  NN )  ->  (DECID  j  ||  K  <-> DECID  ( K  /  j
)  e.  NN ) )
365, 35sylan 283 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (DECID  j  ||  K  <-> DECID  ( K  /  j
)  e.  NN ) )
3733, 36mpbid 147 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  ( K  /  j )  e.  NN )
3828, 37dcand 934 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) )
3938ralrimiva 2563 . . 3  |-  ( N  e.  NN  ->  A. j  e.  NN DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) )
40 breq2 4022 . . . . 5  |-  ( j  =  k  ->  (
1  <  j  <->  1  <  k ) )
41 oveq2 5904 . . . . . 6  |-  ( j  =  k  ->  ( K  /  j )  =  ( K  /  k
) )
4241eleq1d 2258 . . . . 5  |-  ( j  =  k  ->  (
( K  /  j
)  e.  NN  <->  ( K  /  k )  e.  NN ) )
4340, 42anbi12d 473 . . . 4  |-  ( j  =  k  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  <-> 
( 1  <  k  /\  ( K  /  k
)  e.  NN ) ) )
4443nnwosdc 12072 . . 3  |-  ( ( E. j  e.  NN  ( 1  <  j  /\  ( K  /  j
)  e.  NN )  /\  A. j  e.  NN DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) )  ->  E. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) ) )
4523, 39, 44syl2anc 411 . 2  |-  ( N  e.  NN  ->  E. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) ) )
461infpnlem1 12391 . . 3  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) )  ->  ( N  <  j  /\  A. k  e.  NN  (
( j  /  k
)  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) ) )
4746reximdva 2592 . 2  |-  ( N  e.  NN  ->  ( E. j  e.  NN  ( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) )  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) ) )
4845, 47mpd 13 1  |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2160   A.wral 2468   E.wrex 2469   class class class wbr 4018   ` cfv 5235  (class class class)co 5896   CCcc 7839   0cc0 7841   1c1 7842    + caddc 7844    < clt 8022    <_ cle 8023   # cap 8568    / cdiv 8659   NNcn 8949   ZZcz 9283   !cfa 10737    || cdvds 11826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-sup 7013  df-inf 7014  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fzo 10173  df-fl 10301  df-mod 10354  df-seqfrec 10477  df-fac 10738  df-dvds 11827
This theorem is referenced by:  infpn  12393
  Copyright terms: Public domain W3C validator