ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpnlem2 Unicode version

Theorem infpnlem2 12529
Description: Lemma for infpn 12530. For any positive integer  N, there exists a prime number  j greater than  N. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1  |-  K  =  ( ( ! `  N )  +  1 )
Assertion
Ref Expression
infpnlem2  |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
Distinct variable groups:    j, k, N   
j, K, k

Proof of Theorem infpnlem2
StepHypRef Expression
1 infpnlem.1 . . . . 5  |-  K  =  ( ( ! `  N )  +  1 )
2 nnnn0 9256 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
32faccld 10828 . . . . . 6  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN )
43peano2nnd 9005 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  N
)  +  1 )  e.  NN )
51, 4eqeltrid 2283 . . . 4  |-  ( N  e.  NN  ->  K  e.  NN )
63nnge1d 9033 . . . . . 6  |-  ( N  e.  NN  ->  1  <_  ( ! `  N
) )
7 1nn 9001 . . . . . . 7  |-  1  e.  NN
8 nnleltp1 9385 . . . . . . 7  |-  ( ( 1  e.  NN  /\  ( ! `  N )  e.  NN )  -> 
( 1  <_  ( ! `  N )  <->  1  <  ( ( ! `
 N )  +  1 ) ) )
97, 3, 8sylancr 414 . . . . . 6  |-  ( N  e.  NN  ->  (
1  <_  ( ! `  N )  <->  1  <  ( ( ! `  N
)  +  1 ) ) )
106, 9mpbid 147 . . . . 5  |-  ( N  e.  NN  ->  1  <  ( ( ! `  N )  +  1 ) )
1110, 1breqtrrdi 4075 . . . 4  |-  ( N  e.  NN  ->  1  <  K )
12 nncn 8998 . . . . . . 7  |-  ( K  e.  NN  ->  K  e.  CC )
13 nnap0 9019 . . . . . . 7  |-  ( K  e.  NN  ->  K #  0 )
1412, 13jca 306 . . . . . 6  |-  ( K  e.  NN  ->  ( K  e.  CC  /\  K #  0 ) )
15 dividap 8728 . . . . . 6  |-  ( ( K  e.  CC  /\  K #  0 )  ->  ( K  /  K )  =  1 )
165, 14, 153syl 17 . . . . 5  |-  ( N  e.  NN  ->  ( K  /  K )  =  1 )
1716, 7eqeltrdi 2287 . . . 4  |-  ( N  e.  NN  ->  ( K  /  K )  e.  NN )
18 breq2 4037 . . . . . 6  |-  ( j  =  K  ->  (
1  <  j  <->  1  <  K ) )
19 oveq2 5930 . . . . . . 7  |-  ( j  =  K  ->  ( K  /  j )  =  ( K  /  K
) )
2019eleq1d 2265 . . . . . 6  |-  ( j  =  K  ->  (
( K  /  j
)  e.  NN  <->  ( K  /  K )  e.  NN ) )
2118, 20anbi12d 473 . . . . 5  |-  ( j  =  K  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  <-> 
( 1  <  K  /\  ( K  /  K
)  e.  NN ) ) )
2221rspcev 2868 . . . 4  |-  ( ( K  e.  NN  /\  ( 1  <  K  /\  ( K  /  K
)  e.  NN ) )  ->  E. j  e.  NN  ( 1  < 
j  /\  ( K  /  j )  e.  NN ) )
235, 11, 17, 22syl12anc 1247 . . 3  |-  ( N  e.  NN  ->  E. j  e.  NN  ( 1  < 
j  /\  ( K  /  j )  e.  NN ) )
24 1zzd 9353 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  1  e.  ZZ )
25 nnz 9345 . . . . . . 7  |-  ( j  e.  NN  ->  j  e.  ZZ )
2625adantl 277 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  ZZ )
27 zdclt 9403 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  j  e.  ZZ )  -> DECID  1  <  j )
2824, 26, 27syl2anc 411 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  1  <  j )
29 simpr 110 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  NN )
305adantr 276 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  K  e.  NN )
3130nnzd 9447 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  K  e.  ZZ )
32 dvdsdc 11963 . . . . . . 7  |-  ( ( j  e.  NN  /\  K  e.  ZZ )  -> DECID  j 
||  K )
3329, 31, 32syl2anc 411 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  j 
||  K )
34 nndivdvds 11961 . . . . . . . 8  |-  ( ( K  e.  NN  /\  j  e.  NN )  ->  ( j  ||  K  <->  ( K  /  j )  e.  NN ) )
3534dcbid 839 . . . . . . 7  |-  ( ( K  e.  NN  /\  j  e.  NN )  ->  (DECID  j  ||  K  <-> DECID  ( K  /  j
)  e.  NN ) )
365, 35sylan 283 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (DECID  j  ||  K  <-> DECID  ( K  /  j
)  e.  NN ) )
3733, 36mpbid 147 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  ( K  /  j )  e.  NN )
3828, 37dcand 934 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) )
3938ralrimiva 2570 . . 3  |-  ( N  e.  NN  ->  A. j  e.  NN DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) )
40 breq2 4037 . . . . 5  |-  ( j  =  k  ->  (
1  <  j  <->  1  <  k ) )
41 oveq2 5930 . . . . . 6  |-  ( j  =  k  ->  ( K  /  j )  =  ( K  /  k
) )
4241eleq1d 2265 . . . . 5  |-  ( j  =  k  ->  (
( K  /  j
)  e.  NN  <->  ( K  /  k )  e.  NN ) )
4340, 42anbi12d 473 . . . 4  |-  ( j  =  k  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  <-> 
( 1  <  k  /\  ( K  /  k
)  e.  NN ) ) )
4443nnwosdc 12206 . . 3  |-  ( ( E. j  e.  NN  ( 1  <  j  /\  ( K  /  j
)  e.  NN )  /\  A. j  e.  NN DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) )  ->  E. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) ) )
4523, 39, 44syl2anc 411 . 2  |-  ( N  e.  NN  ->  E. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) ) )
461infpnlem1 12528 . . 3  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) )  ->  ( N  <  j  /\  A. k  e.  NN  (
( j  /  k
)  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) ) )
4746reximdva 2599 . 2  |-  ( N  e.  NN  ->  ( E. j  e.  NN  ( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) )  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) ) )
4845, 47mpd 13 1  |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    < clt 8061    <_ cle 8062   # cap 8608    / cdiv 8699   NNcn 8990   ZZcz 9326   !cfa 10817    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-fac 10818  df-dvds 11953
This theorem is referenced by:  infpn  12530
  Copyright terms: Public domain W3C validator