ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpnlem2 Unicode version

Theorem infpnlem2 12341
Description: Lemma for infpn 12342. For any positive integer  N, there exists a prime number  j greater than  N. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1  |-  K  =  ( ( ! `  N )  +  1 )
Assertion
Ref Expression
infpnlem2  |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
Distinct variable groups:    j, k, N   
j, K, k

Proof of Theorem infpnlem2
StepHypRef Expression
1 infpnlem.1 . . . . 5  |-  K  =  ( ( ! `  N )  +  1 )
2 nnnn0 9172 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
32faccld 10700 . . . . . 6  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN )
43peano2nnd 8923 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  N
)  +  1 )  e.  NN )
51, 4eqeltrid 2264 . . . 4  |-  ( N  e.  NN  ->  K  e.  NN )
63nnge1d 8951 . . . . . 6  |-  ( N  e.  NN  ->  1  <_  ( ! `  N
) )
7 1nn 8919 . . . . . . 7  |-  1  e.  NN
8 nnleltp1 9301 . . . . . . 7  |-  ( ( 1  e.  NN  /\  ( ! `  N )  e.  NN )  -> 
( 1  <_  ( ! `  N )  <->  1  <  ( ( ! `
 N )  +  1 ) ) )
97, 3, 8sylancr 414 . . . . . 6  |-  ( N  e.  NN  ->  (
1  <_  ( ! `  N )  <->  1  <  ( ( ! `  N
)  +  1 ) ) )
106, 9mpbid 147 . . . . 5  |-  ( N  e.  NN  ->  1  <  ( ( ! `  N )  +  1 ) )
1110, 1breqtrrdi 4042 . . . 4  |-  ( N  e.  NN  ->  1  <  K )
12 nncn 8916 . . . . . . 7  |-  ( K  e.  NN  ->  K  e.  CC )
13 nnap0 8937 . . . . . . 7  |-  ( K  e.  NN  ->  K #  0 )
1412, 13jca 306 . . . . . 6  |-  ( K  e.  NN  ->  ( K  e.  CC  /\  K #  0 ) )
15 dividap 8647 . . . . . 6  |-  ( ( K  e.  CC  /\  K #  0 )  ->  ( K  /  K )  =  1 )
165, 14, 153syl 17 . . . . 5  |-  ( N  e.  NN  ->  ( K  /  K )  =  1 )
1716, 7eqeltrdi 2268 . . . 4  |-  ( N  e.  NN  ->  ( K  /  K )  e.  NN )
18 breq2 4004 . . . . . 6  |-  ( j  =  K  ->  (
1  <  j  <->  1  <  K ) )
19 oveq2 5877 . . . . . . 7  |-  ( j  =  K  ->  ( K  /  j )  =  ( K  /  K
) )
2019eleq1d 2246 . . . . . 6  |-  ( j  =  K  ->  (
( K  /  j
)  e.  NN  <->  ( K  /  K )  e.  NN ) )
2118, 20anbi12d 473 . . . . 5  |-  ( j  =  K  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  <-> 
( 1  <  K  /\  ( K  /  K
)  e.  NN ) ) )
2221rspcev 2841 . . . 4  |-  ( ( K  e.  NN  /\  ( 1  <  K  /\  ( K  /  K
)  e.  NN ) )  ->  E. j  e.  NN  ( 1  < 
j  /\  ( K  /  j )  e.  NN ) )
235, 11, 17, 22syl12anc 1236 . . 3  |-  ( N  e.  NN  ->  E. j  e.  NN  ( 1  < 
j  /\  ( K  /  j )  e.  NN ) )
24 1zzd 9269 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  1  e.  ZZ )
25 nnz 9261 . . . . . . 7  |-  ( j  e.  NN  ->  j  e.  ZZ )
2625adantl 277 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  ZZ )
27 zdclt 9319 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  j  e.  ZZ )  -> DECID  1  <  j )
2824, 26, 27syl2anc 411 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  1  <  j )
29 simpr 110 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  NN )
305adantr 276 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  K  e.  NN )
3130nnzd 9363 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  K  e.  ZZ )
32 dvdsdc 11789 . . . . . . 7  |-  ( ( j  e.  NN  /\  K  e.  ZZ )  -> DECID  j 
||  K )
3329, 31, 32syl2anc 411 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  j 
||  K )
34 nndivdvds 11787 . . . . . . . 8  |-  ( ( K  e.  NN  /\  j  e.  NN )  ->  ( j  ||  K  <->  ( K  /  j )  e.  NN ) )
3534dcbid 838 . . . . . . 7  |-  ( ( K  e.  NN  /\  j  e.  NN )  ->  (DECID  j  ||  K  <-> DECID  ( K  /  j
)  e.  NN ) )
365, 35sylan 283 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (DECID  j  ||  K  <-> DECID  ( K  /  j
)  e.  NN ) )
3733, 36mpbid 147 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  ( K  /  j )  e.  NN )
38 dcan2 934 . . . . 5  |-  (DECID  1  < 
j  ->  (DECID  ( K  /  j )  e.  NN  -> DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) ) )
3928, 37, 38sylc 62 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  NN )  -> DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) )
4039ralrimiva 2550 . . 3  |-  ( N  e.  NN  ->  A. j  e.  NN DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) )
41 breq2 4004 . . . . 5  |-  ( j  =  k  ->  (
1  <  j  <->  1  <  k ) )
42 oveq2 5877 . . . . . 6  |-  ( j  =  k  ->  ( K  /  j )  =  ( K  /  k
) )
4342eleq1d 2246 . . . . 5  |-  ( j  =  k  ->  (
( K  /  j
)  e.  NN  <->  ( K  /  k )  e.  NN ) )
4441, 43anbi12d 473 . . . 4  |-  ( j  =  k  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  <-> 
( 1  <  k  /\  ( K  /  k
)  e.  NN ) ) )
4544nnwosdc 12023 . . 3  |-  ( ( E. j  e.  NN  ( 1  <  j  /\  ( K  /  j
)  e.  NN )  /\  A. j  e.  NN DECID  ( 1  <  j  /\  ( K  /  j
)  e.  NN ) )  ->  E. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) ) )
4623, 40, 45syl2anc 411 . 2  |-  ( N  e.  NN  ->  E. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) ) )
471infpnlem1 12340 . . 3  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) )  ->  ( N  <  j  /\  A. k  e.  NN  (
( j  /  k
)  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) ) )
4847reximdva 2579 . 2  |-  ( N  e.  NN  ->  ( E. j  e.  NN  ( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  /\  A. k  e.  NN  (
( 1  <  k  /\  ( K  /  k
)  e.  NN )  ->  j  <_  k
) )  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) ) )
4946, 48mpd 13 1  |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   CCcc 7800   0cc0 7802   1c1 7803    + caddc 7805    < clt 7982    <_ cle 7983   # cap 8528    / cdiv 8618   NNcn 8908   ZZcz 9242   !cfa 10689    || cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-fac 10690  df-dvds 11779
This theorem is referenced by:  infpn  12342
  Copyright terms: Public domain W3C validator