| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdmf | Unicode version | ||
| Description: Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| dfdmf.1 |
|
| dfdmf.2 |
|
| Ref | Expression |
|---|---|
| dfdmf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 4673 |
. 2
| |
| 2 | nfcv 2339 |
. . . . 5
| |
| 3 | dfdmf.2 |
. . . . 5
| |
| 4 | nfcv 2339 |
. . . . 5
| |
| 5 | 2, 3, 4 | nfbr 4079 |
. . . 4
|
| 6 | nfv 1542 |
. . . 4
| |
| 7 | breq2 4037 |
. . . 4
| |
| 8 | 5, 6, 7 | cbvex 1770 |
. . 3
|
| 9 | 8 | abbii 2312 |
. 2
|
| 10 | nfcv 2339 |
. . . . 5
| |
| 11 | dfdmf.1 |
. . . . 5
| |
| 12 | nfcv 2339 |
. . . . 5
| |
| 13 | 10, 11, 12 | nfbr 4079 |
. . . 4
|
| 14 | 13 | nfex 1651 |
. . 3
|
| 15 | nfv 1542 |
. . 3
| |
| 16 | breq1 4036 |
. . . 4
| |
| 17 | 16 | exbidv 1839 |
. . 3
|
| 18 | 14, 15, 17 | cbvab 2320 |
. 2
|
| 19 | 1, 9, 18 | 3eqtri 2221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-dm 4673 |
| This theorem is referenced by: dmopab 4877 |
| Copyright terms: Public domain | W3C validator |