ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm4 Unicode version

Theorem dfdm4 4915
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm4  |-  dom  A  =  ran  `' A

Proof of Theorem dfdm4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . 5  |-  y  e. 
_V
2 vex 2802 . . . . 5  |-  x  e. 
_V
31, 2brcnv 4905 . . . 4  |-  ( y `' A x  <->  x A
y )
43exbii 1651 . . 3  |-  ( E. y  y `' A x 
<->  E. y  x A y )
54abbii 2345 . 2  |-  { x  |  E. y  y `' A x }  =  { x  |  E. y  x A y }
6 dfrn2 4910 . 2  |-  ran  `' A  =  { x  |  E. y  y `' A x }
7 df-dm 4729 . 2  |-  dom  A  =  { x  |  E. y  x A y }
85, 6, 73eqtr4ri 2261 1  |-  dom  A  =  ran  `' A
Colors of variables: wff set class
Syntax hints:    = wceq 1395   E.wex 1538   {cab 2215   class class class wbr 4083   `'ccnv 4718   dom cdm 4719   ran crn 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by:  dmcnvcnv  4948  rncnvcnv  4949  rncoeq  4998  cnvimass  5091  cnvimarndm  5092  dminxp  5173  cnvsn0  5197  rnsnopg  5207  dmmpt  5224  dmco  5237  cores2  5241  cnvssrndm  5250  cocnvres  5253  unidmrn  5261  dfdm2  5263  cnvexg  5266  funimacnv  5397  foimacnv  5590  funcocnv2  5597  fimacnv  5764  f1opw2  6212  fopwdom  6997  sbthlemi4  7127  exmidfodomrlemim  7379  hmeores  14989
  Copyright terms: Public domain W3C validator