ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm4 Unicode version

Theorem dfdm4 4871
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm4  |-  dom  A  =  ran  `' A

Proof of Theorem dfdm4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2775 . . . . 5  |-  y  e. 
_V
2 vex 2775 . . . . 5  |-  x  e. 
_V
31, 2brcnv 4862 . . . 4  |-  ( y `' A x  <->  x A
y )
43exbii 1628 . . 3  |-  ( E. y  y `' A x 
<->  E. y  x A y )
54abbii 2321 . 2  |-  { x  |  E. y  y `' A x }  =  { x  |  E. y  x A y }
6 dfrn2 4867 . 2  |-  ran  `' A  =  { x  |  E. y  y `' A x }
7 df-dm 4686 . 2  |-  dom  A  =  { x  |  E. y  x A y }
85, 6, 73eqtr4ri 2237 1  |-  dom  A  =  ran  `' A
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E.wex 1515   {cab 2191   class class class wbr 4045   `'ccnv 4675   dom cdm 4676   ran crn 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-cnv 4684  df-dm 4686  df-rn 4687
This theorem is referenced by:  dmcnvcnv  4903  rncnvcnv  4904  rncoeq  4953  cnvimass  5046  cnvimarndm  5047  dminxp  5128  cnvsn0  5152  rnsnopg  5162  dmmpt  5179  dmco  5192  cores2  5196  cnvssrndm  5205  cocnvres  5208  unidmrn  5216  dfdm2  5218  cnvexg  5221  funimacnv  5351  foimacnv  5542  funcocnv2  5549  fimacnv  5711  f1opw2  6154  fopwdom  6935  sbthlemi4  7064  exmidfodomrlemim  7311  hmeores  14820
  Copyright terms: Public domain W3C validator