ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm4 Unicode version

Theorem dfdm4 4889
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm4  |-  dom  A  =  ran  `' A

Proof of Theorem dfdm4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2779 . . . . 5  |-  y  e. 
_V
2 vex 2779 . . . . 5  |-  x  e. 
_V
31, 2brcnv 4879 . . . 4  |-  ( y `' A x  <->  x A
y )
43exbii 1629 . . 3  |-  ( E. y  y `' A x 
<->  E. y  x A y )
54abbii 2323 . 2  |-  { x  |  E. y  y `' A x }  =  { x  |  E. y  x A y }
6 dfrn2 4884 . 2  |-  ran  `' A  =  { x  |  E. y  y `' A x }
7 df-dm 4703 . 2  |-  dom  A  =  { x  |  E. y  x A y }
85, 6, 73eqtr4ri 2239 1  |-  dom  A  =  ran  `' A
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E.wex 1516   {cab 2193   class class class wbr 4059   `'ccnv 4692   dom cdm 4693   ran crn 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by:  dmcnvcnv  4921  rncnvcnv  4922  rncoeq  4971  cnvimass  5064  cnvimarndm  5065  dminxp  5146  cnvsn0  5170  rnsnopg  5180  dmmpt  5197  dmco  5210  cores2  5214  cnvssrndm  5223  cocnvres  5226  unidmrn  5234  dfdm2  5236  cnvexg  5239  funimacnv  5369  foimacnv  5562  funcocnv2  5569  fimacnv  5732  f1opw2  6175  fopwdom  6958  sbthlemi4  7088  exmidfodomrlemim  7340  hmeores  14902
  Copyright terms: Public domain W3C validator