ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm4 Unicode version

Theorem dfdm4 4855
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm4  |-  dom  A  =  ran  `' A

Proof of Theorem dfdm4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . 5  |-  y  e. 
_V
2 vex 2763 . . . . 5  |-  x  e. 
_V
31, 2brcnv 4846 . . . 4  |-  ( y `' A x  <->  x A
y )
43exbii 1616 . . 3  |-  ( E. y  y `' A x 
<->  E. y  x A y )
54abbii 2309 . 2  |-  { x  |  E. y  y `' A x }  =  { x  |  E. y  x A y }
6 dfrn2 4851 . 2  |-  ran  `' A  =  { x  |  E. y  y `' A x }
7 df-dm 4670 . 2  |-  dom  A  =  { x  |  E. y  x A y }
85, 6, 73eqtr4ri 2225 1  |-  dom  A  =  ran  `' A
Colors of variables: wff set class
Syntax hints:    = wceq 1364   E.wex 1503   {cab 2179   class class class wbr 4030   `'ccnv 4659   dom cdm 4660   ran crn 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-cnv 4668  df-dm 4670  df-rn 4671
This theorem is referenced by:  dmcnvcnv  4887  rncnvcnv  4888  rncoeq  4936  cnvimass  5029  cnvimarndm  5030  dminxp  5111  cnvsn0  5135  rnsnopg  5145  dmmpt  5162  dmco  5175  cores2  5179  cnvssrndm  5188  cocnvres  5191  unidmrn  5199  dfdm2  5201  cnvexg  5204  funimacnv  5331  foimacnv  5519  funcocnv2  5526  fimacnv  5688  f1opw2  6126  fopwdom  6894  sbthlemi4  7021  exmidfodomrlemim  7263  hmeores  14494
  Copyright terms: Public domain W3C validator