ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm4 Unicode version

Theorem dfdm4 4870
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm4  |-  dom  A  =  ran  `' A

Proof of Theorem dfdm4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2775 . . . . 5  |-  y  e. 
_V
2 vex 2775 . . . . 5  |-  x  e. 
_V
31, 2brcnv 4861 . . . 4  |-  ( y `' A x  <->  x A
y )
43exbii 1628 . . 3  |-  ( E. y  y `' A x 
<->  E. y  x A y )
54abbii 2321 . 2  |-  { x  |  E. y  y `' A x }  =  { x  |  E. y  x A y }
6 dfrn2 4866 . 2  |-  ran  `' A  =  { x  |  E. y  y `' A x }
7 df-dm 4685 . 2  |-  dom  A  =  { x  |  E. y  x A y }
85, 6, 73eqtr4ri 2237 1  |-  dom  A  =  ran  `' A
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E.wex 1515   {cab 2191   class class class wbr 4044   `'ccnv 4674   dom cdm 4675   ran crn 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-cnv 4683  df-dm 4685  df-rn 4686
This theorem is referenced by:  dmcnvcnv  4902  rncnvcnv  4903  rncoeq  4952  cnvimass  5045  cnvimarndm  5046  dminxp  5127  cnvsn0  5151  rnsnopg  5161  dmmpt  5178  dmco  5191  cores2  5195  cnvssrndm  5204  cocnvres  5207  unidmrn  5215  dfdm2  5217  cnvexg  5220  funimacnv  5350  foimacnv  5540  funcocnv2  5547  fimacnv  5709  f1opw2  6152  fopwdom  6933  sbthlemi4  7062  exmidfodomrlemim  7309  hmeores  14787
  Copyright terms: Public domain W3C validator