ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm4 Unicode version

Theorem dfdm4 4821
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm4  |-  dom  A  =  ran  `' A

Proof of Theorem dfdm4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2742 . . . . 5  |-  y  e. 
_V
2 vex 2742 . . . . 5  |-  x  e. 
_V
31, 2brcnv 4812 . . . 4  |-  ( y `' A x  <->  x A
y )
43exbii 1605 . . 3  |-  ( E. y  y `' A x 
<->  E. y  x A y )
54abbii 2293 . 2  |-  { x  |  E. y  y `' A x }  =  { x  |  E. y  x A y }
6 dfrn2 4817 . 2  |-  ran  `' A  =  { x  |  E. y  y `' A x }
7 df-dm 4638 . 2  |-  dom  A  =  { x  |  E. y  x A y }
85, 6, 73eqtr4ri 2209 1  |-  dom  A  =  ran  `' A
Colors of variables: wff set class
Syntax hints:    = wceq 1353   E.wex 1492   {cab 2163   class class class wbr 4005   `'ccnv 4627   dom cdm 4628   ran crn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-cnv 4636  df-dm 4638  df-rn 4639
This theorem is referenced by:  dmcnvcnv  4853  rncnvcnv  4854  rncoeq  4902  cnvimass  4993  cnvimarndm  4994  dminxp  5075  cnvsn0  5099  rnsnopg  5109  dmmpt  5126  dmco  5139  cores2  5143  cnvssrndm  5152  cocnvres  5155  unidmrn  5163  dfdm2  5165  cnvexg  5168  funimacnv  5294  foimacnv  5481  funcocnv2  5488  fimacnv  5647  f1opw2  6079  fopwdom  6838  sbthlemi4  6961  exmidfodomrlemim  7202  hmeores  13854
  Copyright terms: Public domain W3C validator