ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmopab Unicode version

Theorem dmopab 4887
Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
dmopab  |-  dom  { <. x ,  y >.  |  ph }  =  {
x  |  E. y ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem dmopab
StepHypRef Expression
1 nfopab1 4112 . . 3  |-  F/_ x { <. x ,  y
>.  |  ph }
2 nfopab2 4113 . . 3  |-  F/_ y { <. x ,  y
>.  |  ph }
31, 2dfdmf 4869 . 2  |-  dom  { <. x ,  y >.  |  ph }  =  {
x  |  E. y  x { <. x ,  y
>.  |  ph } y }
4 df-br 4044 . . . . 5  |-  ( x { <. x ,  y
>.  |  ph } y  <->  <. x ,  y >.  e.  { <. x ,  y
>.  |  ph } )
5 opabid 4300 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
64, 5bitri 184 . . . 4  |-  ( x { <. x ,  y
>.  |  ph } y  <->  ph )
76exbii 1627 . . 3  |-  ( E. y  x { <. x ,  y >.  |  ph } y  <->  E. y ph )
87abbii 2320 . 2  |-  { x  |  E. y  x { <. x ,  y >.  |  ph } y }  =  { x  |  E. y ph }
93, 8eqtri 2225 1  |-  dom  { <. x ,  y >.  |  ph }  =  {
x  |  E. y ph }
Colors of variables: wff set class
Syntax hints:    = wceq 1372   E.wex 1514    e. wcel 2175   {cab 2190   <.cop 3635   class class class wbr 4043   {copab 4103   dom cdm 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-dm 4683
This theorem is referenced by:  dmopabss  4888  dmopab3  4889  fndmin  5681  dmoprab  6016  shftdm  11052
  Copyright terms: Public domain W3C validator