ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn2 Unicode version

Theorem dffn2 5323
Description: Any function is a mapping into  _V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dffn2  |-  ( F  Fn  A  <->  F : A
--> _V )

Proof of Theorem dffn2
StepHypRef Expression
1 ssv 3150 . . 3  |-  ran  F  C_ 
_V
21biantru 300 . 2  |-  ( F  Fn  A  <->  ( F  Fn  A  /\  ran  F  C_ 
_V ) )
3 df-f 5176 . 2  |-  ( F : A --> _V  <->  ( F  Fn  A  /\  ran  F  C_ 
_V ) )
42, 3bitr4i 186 1  |-  ( F  Fn  A  <->  F : A
--> _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   _Vcvv 2712    C_ wss 3102   ran crn 4589    Fn wfn 5167   -->wf 5168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-v 2714  df-in 3108  df-ss 3115  df-f 5176
This theorem is referenced by:  f1cnvcnv  5388  fcoconst  5640  fnressn  5655  1stcof  6113  2ndcof  6114  fnmpo  6152  tposfn  6222  tfrlemibfn  6277  tfr1onlembfn  6293  mptelixpg  6681
  Copyright terms: Public domain W3C validator