Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffn2 | Unicode version |
Description: Any function is a mapping into . (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffn2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3164 | . . 3 | |
2 | 1 | biantru 300 | . 2 |
3 | df-f 5192 | . 2 | |
4 | 2, 3 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 cvv 2726 wss 3116 crn 4605 wfn 5183 wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 df-in 3122 df-ss 3129 df-f 5192 |
This theorem is referenced by: f1cnvcnv 5404 fcoconst 5656 fnressn 5671 1stcof 6131 2ndcof 6132 fnmpo 6170 tposfn 6241 tfrlemibfn 6296 tfr1onlembfn 6312 mptelixpg 6700 |
Copyright terms: Public domain | W3C validator |