ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn2 Unicode version

Theorem dffn2 5475
Description: Any function is a mapping into  _V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dffn2  |-  ( F  Fn  A  <->  F : A
--> _V )

Proof of Theorem dffn2
StepHypRef Expression
1 ssv 3246 . . 3  |-  ran  F  C_ 
_V
21biantru 302 . 2  |-  ( F  Fn  A  <->  ( F  Fn  A  /\  ran  F  C_ 
_V ) )
3 df-f 5322 . 2  |-  ( F : A --> _V  <->  ( F  Fn  A  /\  ran  F  C_ 
_V ) )
42, 3bitr4i 187 1  |-  ( F  Fn  A  <->  F : A
--> _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   _Vcvv 2799    C_ wss 3197   ran crn 4720    Fn wfn 5313   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801  df-in 3203  df-ss 3210  df-f 5322
This theorem is referenced by:  f1cnvcnv  5542  fcoconst  5806  fnressn  5825  1stcof  6309  2ndcof  6310  fnmpo  6348  tposfn  6419  tfrlemibfn  6474  tfr1onlembfn  6490  mptelixpg  6881
  Copyright terms: Public domain W3C validator