ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn2 Unicode version

Theorem dffn2 5369
Description: Any function is a mapping into  _V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dffn2  |-  ( F  Fn  A  <->  F : A
--> _V )

Proof of Theorem dffn2
StepHypRef Expression
1 ssv 3179 . . 3  |-  ran  F  C_ 
_V
21biantru 302 . 2  |-  ( F  Fn  A  <->  ( F  Fn  A  /\  ran  F  C_ 
_V ) )
3 df-f 5222 . 2  |-  ( F : A --> _V  <->  ( F  Fn  A  /\  ran  F  C_ 
_V ) )
42, 3bitr4i 187 1  |-  ( F  Fn  A  <->  F : A
--> _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   _Vcvv 2739    C_ wss 3131   ran crn 4629    Fn wfn 5213   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741  df-in 3137  df-ss 3144  df-f 5222
This theorem is referenced by:  f1cnvcnv  5434  fcoconst  5689  fnressn  5704  1stcof  6166  2ndcof  6167  fnmpo  6205  tposfn  6276  tfrlemibfn  6331  tfr1onlembfn  6347  mptelixpg  6736
  Copyright terms: Public domain W3C validator