ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn2 Unicode version

Theorem dffn2 5405
Description: Any function is a mapping into  _V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dffn2  |-  ( F  Fn  A  <->  F : A
--> _V )

Proof of Theorem dffn2
StepHypRef Expression
1 ssv 3201 . . 3  |-  ran  F  C_ 
_V
21biantru 302 . 2  |-  ( F  Fn  A  <->  ( F  Fn  A  /\  ran  F  C_ 
_V ) )
3 df-f 5258 . 2  |-  ( F : A --> _V  <->  ( F  Fn  A  /\  ran  F  C_ 
_V ) )
42, 3bitr4i 187 1  |-  ( F  Fn  A  <->  F : A
--> _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   _Vcvv 2760    C_ wss 3153   ran crn 4660    Fn wfn 5249   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762  df-in 3159  df-ss 3166  df-f 5258
This theorem is referenced by:  f1cnvcnv  5470  fcoconst  5729  fnressn  5744  1stcof  6216  2ndcof  6217  fnmpo  6255  tposfn  6326  tfrlemibfn  6381  tfr1onlembfn  6397  mptelixpg  6788
  Copyright terms: Public domain W3C validator