| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffn2 | Unicode version | ||
| Description: Any function is a mapping
into |
| Ref | Expression |
|---|---|
| dffn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3246 |
. . 3
| |
| 2 | 1 | biantru 302 |
. 2
|
| 3 | df-f 5322 |
. 2
| |
| 4 | 2, 3 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 df-in 3203 df-ss 3210 df-f 5322 |
| This theorem is referenced by: f1cnvcnv 5542 fcoconst 5806 fnressn 5825 1stcof 6309 2ndcof 6310 fnmpo 6348 tposfn 6419 tfrlemibfn 6474 tfr1onlembfn 6490 mptelixpg 6881 |
| Copyright terms: Public domain | W3C validator |