Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffn2 | Unicode version |
Description: Any function is a mapping into . (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffn2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3169 | . . 3 | |
2 | 1 | biantru 300 | . 2 |
3 | df-f 5202 | . 2 | |
4 | 2, 3 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 cvv 2730 wss 3121 crn 4612 wfn 5193 wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 df-in 3127 df-ss 3134 df-f 5202 |
This theorem is referenced by: f1cnvcnv 5414 fcoconst 5667 fnressn 5682 1stcof 6142 2ndcof 6143 fnmpo 6181 tposfn 6252 tfrlemibfn 6307 tfr1onlembfn 6323 mptelixpg 6712 |
Copyright terms: Public domain | W3C validator |