ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn2 Unicode version

Theorem dffn2 5426
Description: Any function is a mapping into  _V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dffn2  |-  ( F  Fn  A  <->  F : A
--> _V )

Proof of Theorem dffn2
StepHypRef Expression
1 ssv 3214 . . 3  |-  ran  F  C_ 
_V
21biantru 302 . 2  |-  ( F  Fn  A  <->  ( F  Fn  A  /\  ran  F  C_ 
_V ) )
3 df-f 5274 . 2  |-  ( F : A --> _V  <->  ( F  Fn  A  /\  ran  F  C_ 
_V ) )
42, 3bitr4i 187 1  |-  ( F  Fn  A  <->  F : A
--> _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   _Vcvv 2771    C_ wss 3165   ran crn 4675    Fn wfn 5265   -->wf 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-v 2773  df-in 3171  df-ss 3178  df-f 5274
This theorem is referenced by:  f1cnvcnv  5491  fcoconst  5750  fnressn  5769  1stcof  6248  2ndcof  6249  fnmpo  6287  tposfn  6358  tfrlemibfn  6413  tfr1onlembfn  6429  mptelixpg  6820
  Copyright terms: Public domain W3C validator