ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcoconst Unicode version

Theorem fcoconst 5690
Description: Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Assertion
Ref Expression
fcoconst  |-  ( ( F  Fn  X  /\  Y  e.  X )  ->  ( F  o.  (
I  X.  { Y } ) )  =  ( I  X.  {
( F `  Y
) } ) )

Proof of Theorem fcoconst
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . 3  |-  ( ( ( F  Fn  X  /\  Y  e.  X
)  /\  x  e.  I )  ->  Y  e.  X )
2 fconstmpt 4675 . . . 4  |-  ( I  X.  { Y }
)  =  ( x  e.  I  |->  Y )
32a1i 9 . . 3  |-  ( ( F  Fn  X  /\  Y  e.  X )  ->  ( I  X.  { Y } )  =  ( x  e.  I  |->  Y ) )
4 simpl 109 . . . . 5  |-  ( ( F  Fn  X  /\  Y  e.  X )  ->  F  Fn  X )
5 dffn2 5369 . . . . 5  |-  ( F  Fn  X  <->  F : X
--> _V )
64, 5sylib 122 . . . 4  |-  ( ( F  Fn  X  /\  Y  e.  X )  ->  F : X --> _V )
76feqmptd 5572 . . 3  |-  ( ( F  Fn  X  /\  Y  e.  X )  ->  F  =  ( y  e.  X  |->  ( F `
 y ) ) )
8 fveq2 5517 . . 3  |-  ( y  =  Y  ->  ( F `  y )  =  ( F `  Y ) )
91, 3, 7, 8fmptco 5685 . 2  |-  ( ( F  Fn  X  /\  Y  e.  X )  ->  ( F  o.  (
I  X.  { Y } ) )  =  ( x  e.  I  |->  ( F `  Y
) ) )
10 fconstmpt 4675 . 2  |-  ( I  X.  { ( F `
 Y ) } )  =  ( x  e.  I  |->  ( F `
 Y ) )
119, 10eqtr4di 2228 1  |-  ( ( F  Fn  X  /\  Y  e.  X )  ->  ( F  o.  (
I  X.  { Y } ) )  =  ( I  X.  {
( F `  Y
) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739   {csn 3594    |-> cmpt 4066    X. cxp 4626    o. ccom 4632    Fn wfn 5213   -->wf 5214   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator