ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn2 GIF version

Theorem dffn2 5434
Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dffn2 (𝐹 Fn 𝐴𝐹:𝐴⟶V)

Proof of Theorem dffn2
StepHypRef Expression
1 ssv 3217 . . 3 ran 𝐹 ⊆ V
21biantru 302 . 2 (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V))
3 df-f 5281 . 2 (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V))
42, 3bitr4i 187 1 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  Vcvv 2773  wss 3168  ran crn 4681   Fn wfn 5272  wf 5273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775  df-in 3174  df-ss 3181  df-f 5281
This theorem is referenced by:  f1cnvcnv  5501  fcoconst  5761  fnressn  5780  1stcof  6259  2ndcof  6260  fnmpo  6298  tposfn  6369  tfrlemibfn  6424  tfr1onlembfn  6440  mptelixpg  6831
  Copyright terms: Public domain W3C validator