| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffn2 | GIF version | ||
| Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3217 | . . 3 ⊢ ran 𝐹 ⊆ V | |
| 2 | 1 | biantru 302 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
| 3 | df-f 5281 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
| 4 | 2, 3 | bitr4i 187 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 Vcvv 2773 ⊆ wss 3168 ran crn 4681 Fn wfn 5272 ⟶wf 5273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 df-in 3174 df-ss 3181 df-f 5281 |
| This theorem is referenced by: f1cnvcnv 5501 fcoconst 5761 fnressn 5780 1stcof 6259 2ndcof 6260 fnmpo 6298 tposfn 6369 tfrlemibfn 6424 tfr1onlembfn 6440 mptelixpg 6831 |
| Copyright terms: Public domain | W3C validator |