ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn2 GIF version

Theorem dffn2 5409
Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dffn2 (𝐹 Fn 𝐴𝐹:𝐴⟶V)

Proof of Theorem dffn2
StepHypRef Expression
1 ssv 3205 . . 3 ran 𝐹 ⊆ V
21biantru 302 . 2 (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V))
3 df-f 5262 . 2 (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V))
42, 3bitr4i 187 1 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  Vcvv 2763  wss 3157  ran crn 4664   Fn wfn 5253  wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765  df-in 3163  df-ss 3170  df-f 5262
This theorem is referenced by:  f1cnvcnv  5474  fcoconst  5733  fnressn  5748  1stcof  6221  2ndcof  6222  fnmpo  6260  tposfn  6331  tfrlemibfn  6386  tfr1onlembfn  6402  mptelixpg  6793
  Copyright terms: Public domain W3C validator