ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn2 GIF version

Theorem dffn2 5339
Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dffn2 (𝐹 Fn 𝐴𝐹:𝐴⟶V)

Proof of Theorem dffn2
StepHypRef Expression
1 ssv 3164 . . 3 ran 𝐹 ⊆ V
21biantru 300 . 2 (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V))
3 df-f 5192 . 2 (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V))
42, 3bitr4i 186 1 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  Vcvv 2726  wss 3116  ran crn 4605   Fn wfn 5183  wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728  df-in 3122  df-ss 3129  df-f 5192
This theorem is referenced by:  f1cnvcnv  5404  fcoconst  5656  fnressn  5671  1stcof  6131  2ndcof  6132  fnmpo  6170  tposfn  6241  tfrlemibfn  6296  tfr1onlembfn  6312  mptelixpg  6700
  Copyright terms: Public domain W3C validator