| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffnd | Unicode version | ||
| Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| ffnd.1 |
|
| Ref | Expression |
|---|---|
| ffnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnd.1 |
. 2
| |
| 2 | ffn 5425 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5275 |
| This theorem is referenced by: offeq 6172 caofid0l 6185 caofid0r 6186 caofid1 6187 caofid2 6188 difinfsn 7202 ctssdc 7215 nnnninfeq 7230 nninfdcinf 7273 nninfwlporlemd 7274 nninfwlporlem 7275 ofnegsub 9035 seqvalcd 10606 seq3feq2 10621 seq3feq 10625 seqf1oglem2 10665 seqfeq3 10674 ser0f 10679 facnn 10872 fac0 10873 resunimafz0 10976 wrdfn 11009 swrdvalfn 11109 seq3shft 11149 fisumss 11703 prodf1f 11854 efcvgfsum 11978 nninfctlemfo 12361 ennnfonelemfun 12788 ennnfonelemf1 12789 prdsplusgsgrpcl 13246 prdssgrpd 13247 prdsplusgcl 13278 prdsidlem 13279 prdsmndd 13280 mhmf1o 13302 resmhm2b 13321 mhmima 13323 mhmeql 13324 gsumwmhm 13330 grpinvf1o 13402 prdsinvlem 13440 ghmrn 13593 ghmpreima 13602 ghmeql 13603 ghmnsgima 13604 ghmnsgpreima 13605 ghmeqker 13607 ghmf1o 13611 gsumfzmptfidmadd 13675 rhmf1o 13930 rnrhmsubrg 14014 psrbaglesuppg 14434 mplsubgfilemcl 14461 cnrest2 14708 lmss 14718 lmtopcnp 14722 upxp 14744 uptx 14746 cnmpt11 14755 cnmpt21 14763 cnmpt22f 14767 cnmptcom 14770 hmeof1o2 14780 psmetxrge0 14804 isxmet2d 14820 blelrnps 14891 blelrn 14892 xmetresbl 14912 comet 14971 bdxmet 14973 xmettx 14982 dvidlemap 15163 dvidrelem 15164 dvidsslem 15165 dvaddxxbr 15173 dvmulxxbr 15174 dvrecap 15185 plyaddlem1 15219 nninfall 15946 nninfsellemeqinf 15953 nninffeq 15957 nnnninfex 15959 nninfnfiinf 15960 refeq 15967 |
| Copyright terms: Public domain | W3C validator |