| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffnd | Unicode version | ||
| Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| ffnd.1 |
|
| Ref | Expression |
|---|---|
| ffnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnd.1 |
. 2
| |
| 2 | ffn 5445 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5294 |
| This theorem is referenced by: offeq 6195 caofid0l 6208 caofid0r 6209 caofid1 6210 caofid2 6211 difinfsn 7228 ctssdc 7241 nnnninfeq 7256 nninfdcinf 7299 nninfwlporlemd 7300 nninfwlporlem 7301 ofnegsub 9070 seqvalcd 10643 seq3feq2 10658 seq3feq 10662 seqf1oglem2 10702 seqfeq3 10711 ser0f 10716 facnn 10909 fac0 10910 resunimafz0 11013 wrdfn 11046 swrdvalfn 11147 pfxfn 11174 pfxid 11177 cats1un 11212 seq3shft 11264 fisumss 11818 prodf1f 11969 efcvgfsum 12093 nninfctlemfo 12476 ennnfonelemfun 12903 ennnfonelemf1 12904 prdsplusgsgrpcl 13361 prdssgrpd 13362 prdsplusgcl 13393 prdsidlem 13394 prdsmndd 13395 mhmf1o 13417 resmhm2b 13436 mhmima 13438 mhmeql 13439 gsumwmhm 13445 grpinvf1o 13517 prdsinvlem 13555 ghmrn 13708 ghmpreima 13717 ghmeql 13718 ghmnsgima 13719 ghmnsgpreima 13720 ghmeqker 13722 ghmf1o 13726 gsumfzmptfidmadd 13790 rhmf1o 14045 rnrhmsubrg 14129 psrbaglesuppg 14549 mplsubgfilemcl 14576 cnrest2 14823 lmss 14833 lmtopcnp 14837 upxp 14859 uptx 14861 cnmpt11 14870 cnmpt21 14878 cnmpt22f 14882 cnmptcom 14885 hmeof1o2 14895 psmetxrge0 14919 isxmet2d 14935 blelrnps 15006 blelrn 15007 xmetresbl 15027 comet 15086 bdxmet 15088 xmettx 15097 dvidlemap 15278 dvidrelem 15279 dvidsslem 15280 dvaddxxbr 15288 dvmulxxbr 15289 dvrecap 15300 plyaddlem1 15334 upgredg 15848 nninfall 16148 nninfsellemeqinf 16155 nninffeq 16159 nnnninfex 16161 nninfnfiinf 16162 refeq 16169 |
| Copyright terms: Public domain | W3C validator |