| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffnd | Unicode version | ||
| Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| ffnd.1 |
|
| Ref | Expression |
|---|---|
| ffnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnd.1 |
. 2
| |
| 2 | ffn 5473 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5322 |
| This theorem is referenced by: offeq 6232 caofid0l 6245 caofid0r 6246 caofid1 6247 caofid2 6248 difinfsn 7267 ctssdc 7280 nnnninfeq 7295 nninfdcinf 7338 nninfwlporlemd 7339 nninfwlporlem 7340 ofnegsub 9109 seqvalcd 10683 seq3feq2 10698 seq3feq 10702 seqf1oglem2 10742 seqfeq3 10751 ser0f 10756 facnn 10949 fac0 10950 resunimafz0 11053 wrdfn 11086 swrdvalfn 11188 pfxfn 11215 pfxid 11218 cats1un 11253 seq3shft 11349 fisumss 11903 prodf1f 12054 efcvgfsum 12178 nninfctlemfo 12561 ennnfonelemfun 12988 ennnfonelemf1 12989 prdsplusgsgrpcl 13447 prdssgrpd 13448 prdsplusgcl 13479 prdsidlem 13480 prdsmndd 13481 mhmf1o 13503 resmhm2b 13522 mhmima 13524 mhmeql 13525 gsumwmhm 13531 grpinvf1o 13603 prdsinvlem 13641 ghmrn 13794 ghmpreima 13803 ghmeql 13804 ghmnsgima 13805 ghmnsgpreima 13806 ghmeqker 13808 ghmf1o 13812 gsumfzmptfidmadd 13876 rhmf1o 14132 rnrhmsubrg 14216 psrbaglesuppg 14636 mplsubgfilemcl 14663 cnrest2 14910 lmss 14920 lmtopcnp 14924 upxp 14946 uptx 14948 cnmpt11 14957 cnmpt21 14965 cnmpt22f 14969 cnmptcom 14972 hmeof1o2 14982 psmetxrge0 15006 isxmet2d 15022 blelrnps 15093 blelrn 15094 xmetresbl 15114 comet 15173 bdxmet 15175 xmettx 15184 dvidlemap 15365 dvidrelem 15366 dvidsslem 15367 dvaddxxbr 15375 dvmulxxbr 15376 dvrecap 15387 plyaddlem1 15421 upgredg 15942 nninfall 16375 nninfsellemeqinf 16382 nninffeq 16386 nnnninfex 16388 nninfnfiinf 16389 refeq 16396 |
| Copyright terms: Public domain | W3C validator |