![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffnd | Unicode version |
Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ffnd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ffnd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ffn 5230 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-f 5085 |
This theorem is referenced by: offeq 5949 difinfsn 6937 ctssdc 6950 seqvalcd 10125 seq3feq2 10136 seq3feq 10138 seqfeq3 10178 ser0f 10181 facnn 10366 fac0 10367 resunimafz0 10467 seq3shft 10503 fisumss 11053 efcvgfsum 11224 ennnfonelemfun 11775 ennnfonelemf1 11776 cnrest2 12247 lmss 12257 lmtopcnp 12261 upxp 12283 uptx 12285 cnmpt11 12294 cnmpt21 12302 cnmpt22f 12306 cnmptcom 12309 psmetxrge0 12321 isxmet2d 12337 blelrnps 12408 blelrn 12409 xmetresbl 12429 comet 12488 bdxmet 12490 xmettx 12499 dvidlemap 12615 dvaddxxbr 12620 dvmulxxbr 12621 nninfalllemn 12894 nninfall 12896 nninfsellemeqinf 12904 nninffeq 12908 refeq 12915 |
Copyright terms: Public domain | W3C validator |