Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffnd | Unicode version |
Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ffnd.1 |
Ref | Expression |
---|---|
ffnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnd.1 | . 2 | |
2 | ffn 5347 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wfn 5193 wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-f 5202 |
This theorem is referenced by: offeq 6074 difinfsn 7077 ctssdc 7090 nnnninfeq 7104 nninfdcinf 7147 nninfwlporlemd 7148 nninfwlporlem 7149 seqvalcd 10415 seq3feq2 10426 seq3feq 10428 seqfeq3 10468 ser0f 10471 facnn 10661 fac0 10662 resunimafz0 10766 seq3shft 10802 fisumss 11355 prodf1f 11506 efcvgfsum 11630 ennnfonelemfun 12372 ennnfonelemf1 12373 mhmf1o 12693 mhmima 12706 mhmeql 12707 grpinvf1o 12769 cnrest2 13030 lmss 13040 lmtopcnp 13044 upxp 13066 uptx 13068 cnmpt11 13077 cnmpt21 13085 cnmpt22f 13089 cnmptcom 13092 hmeof1o2 13102 psmetxrge0 13126 isxmet2d 13142 blelrnps 13213 blelrn 13214 xmetresbl 13234 comet 13293 bdxmet 13295 xmettx 13304 dvidlemap 13454 dvaddxxbr 13459 dvmulxxbr 13460 dvrecap 13471 nninfall 14042 nninfsellemeqinf 14049 nninffeq 14053 refeq 14060 |
Copyright terms: Public domain | W3C validator |