ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemibfn Unicode version

Theorem tfrlemibfn 6305
Description: The union of  B is a function defined on  x. Lemma for tfrlemi1 6309. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemi1.3  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
tfrlemi1.4  |-  ( ph  ->  x  e.  On )
tfrlemi1.5  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfrlemibfn  |-  ( ph  ->  U. B  Fn  x
)
Distinct variable groups:    f, g, h, w, x, y, z, A    f, F, g, h, w, x, y, z    ph, w, y    w, B, f, g, h, z    ph, g, h, z
Allowed substitution hints:    ph( x, f)    B( x, y)

Proof of Theorem tfrlemibfn
StepHypRef Expression
1 tfrlemisucfn.1 . . . . . 6  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
2 tfrlemisucfn.2 . . . . . 6  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
3 tfrlemi1.3 . . . . . 6  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
4 tfrlemi1.4 . . . . . 6  |-  ( ph  ->  x  e.  On )
5 tfrlemi1.5 . . . . . 6  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
61, 2, 3, 4, 5tfrlemibacc 6303 . . . . 5  |-  ( ph  ->  B  C_  A )
76unissd 3818 . . . 4  |-  ( ph  ->  U. B  C_  U. A
)
81recsfval 6292 . . . 4  |- recs ( F )  =  U. A
97, 8sseqtrrdi 3196 . . 3  |-  ( ph  ->  U. B  C_ recs ( F ) )
101tfrlem7 6294 . . 3  |-  Fun recs ( F )
11 funss 5215 . . 3  |-  ( U. B  C_ recs ( F )  ->  ( Fun recs ( F )  ->  Fun  U. B ) )
129, 10, 11mpisyl 1439 . 2  |-  ( ph  ->  Fun  U. B )
13 simpr3 1000 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  h  =  ( g  u.  { <. z ,  ( F `  g ) >. } ) )
142ad2antrr 485 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
154ad2antrr 485 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  x  e.  On )
16 simplr 525 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  z  e.  x
)
17 onelon 4367 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  On  /\  z  e.  x )  ->  z  e.  On )
1815, 16, 17syl2anc 409 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  z  e.  On )
19 simpr1 998 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  g  Fn  z
)
20 simpr2 999 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  g  e.  A
)
211, 14, 18, 19, 20tfrlemisucfn 6301 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  Fn  suc  z )
22 dffn2 5347 . . . . . . . . . . . . . . . 16  |-  ( ( g  u.  { <. z ,  ( F `  g ) >. } )  Fn  suc  z  <->  ( g  u.  { <. z ,  ( F `  g )
>. } ) : suc  z
--> _V )
2321, 22sylib 121 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } ) : suc  z
--> _V )
24 fssxp 5363 . . . . . . . . . . . . . . 15  |-  ( ( g  u.  { <. z ,  ( F `  g ) >. } ) : suc  z --> _V 
->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  C_  ( suc  z  X.  _V )
)
2523, 24syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  C_  ( suc  z  X.  _V )
)
26 eloni 4358 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  On  ->  Ord  x )
2715, 26syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  Ord  x )
28 ordsucss 4486 . . . . . . . . . . . . . . . 16  |-  ( Ord  x  ->  ( z  e.  x  ->  suc  z  C_  x ) )
2927, 16, 28sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  suc  z  C_  x )
30 xpss1 4719 . . . . . . . . . . . . . . 15  |-  ( suc  z  C_  x  ->  ( suc  z  X.  _V )  C_  ( x  X.  _V ) )
3129, 30syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  ( suc  z  X.  _V )  C_  (
x  X.  _V )
)
3225, 31sstrd 3157 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  C_  (
x  X.  _V )
)
33 vex 2733 . . . . . . . . . . . . . . . 16  |-  g  e. 
_V
34 vex 2733 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
352tfrlem3-2d 6289 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e.  _V ) )
3635simprd 113 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( F `  g
)  e.  _V )
37 opexg 4211 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  _V  /\  ( F `  g )  e.  _V )  ->  <. z ,  ( F `
 g ) >.  e.  _V )
3834, 36, 37sylancr 412 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> 
<. z ,  ( F `
 g ) >.  e.  _V )
39 snexg 4168 . . . . . . . . . . . . . . . . 17  |-  ( <.
z ,  ( F `
 g ) >.  e.  _V  ->  { <. z ,  ( F `  g ) >. }  e.  _V )
4038, 39syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { <. z ,  ( F `  g )
>. }  e.  _V )
41 unexg 4426 . . . . . . . . . . . . . . . 16  |-  ( ( g  e.  _V  /\  {
<. z ,  ( F `
 g ) >. }  e.  _V )  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  e.  _V )
4233, 40, 41sylancr 412 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  e.  _V )
43 elpwg 3572 . . . . . . . . . . . . . . 15  |-  ( ( g  u.  { <. z ,  ( F `  g ) >. } )  e.  _V  ->  (
( g  u.  { <. z ,  ( F `
 g ) >. } )  e.  ~P ( x  X.  _V )  <->  ( g  u.  { <. z ,  ( F `  g ) >. } ) 
C_  ( x  X.  _V ) ) )
4442, 43syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( g  u. 
{ <. z ,  ( F `  g )
>. } )  e.  ~P ( x  X.  _V )  <->  ( g  u.  { <. z ,  ( F `  g ) >. } ) 
C_  ( x  X.  _V ) ) )
4544ad2antrr 485 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  ( ( g  u.  { <. z ,  ( F `  g ) >. } )  e.  ~P ( x  X.  _V )  <->  ( g  u.  { <. z ,  ( F `  g )
>. } )  C_  (
x  X.  _V )
) )
4632, 45mpbird 166 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  e.  ~P ( x  X.  _V )
)
4713, 46eqeltrd 2247 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  h  e.  ~P ( x  X.  _V )
)
4847ex 114 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  x )  ->  (
( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( F `  g ) >. } ) )  ->  h  e.  ~P ( x  X.  _V ) ) )
4948exlimdv 1812 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  x )  ->  ( E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )  ->  h  e.  ~P (
x  X.  _V )
) )
5049rexlimdva 2587 . . . . . . . 8  |-  ( ph  ->  ( E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) )  ->  h  e.  ~P (
x  X.  _V )
) )
5150abssdv 3221 . . . . . . 7  |-  ( ph  ->  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) } 
C_  ~P ( x  X.  _V ) )
523, 51eqsstrid 3193 . . . . . 6  |-  ( ph  ->  B  C_  ~P (
x  X.  _V )
)
53 sspwuni 3955 . . . . . 6  |-  ( B 
C_  ~P ( x  X.  _V )  <->  U. B  C_  (
x  X.  _V )
)
5452, 53sylib 121 . . . . 5  |-  ( ph  ->  U. B  C_  (
x  X.  _V )
)
55 dmss 4808 . . . . 5  |-  ( U. B  C_  ( x  X.  _V )  ->  dom  U. B  C_  dom  ( x  X.  _V ) )
5654, 55syl 14 . . . 4  |-  ( ph  ->  dom  U. B  C_  dom  ( x  X.  _V ) )
57 dmxpss 5039 . . . 4  |-  dom  (
x  X.  _V )  C_  x
5856, 57sstrdi 3159 . . 3  |-  ( ph  ->  dom  U. B  C_  x )
591, 2, 3, 4, 5tfrlemibxssdm 6304 . . 3  |-  ( ph  ->  x  C_  dom  U. B
)
6058, 59eqssd 3164 . 2  |-  ( ph  ->  dom  U. B  =  x )
61 df-fn 5199 . 2  |-  ( U. B  Fn  x  <->  ( Fun  U. B  /\  dom  U. B  =  x )
)
6212, 60, 61sylanbrc 415 1  |-  ( ph  ->  U. B  Fn  x
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   _Vcvv 2730    u. cun 3119    C_ wss 3121   ~Pcpw 3564   {csn 3581   <.cop 3584   U.cuni 3794   Ord word 4345   Oncon0 4346   suc csuc 4348    X. cxp 4607   dom cdm 4609    |` cres 4611   Fun wfun 5190    Fn wfn 5191   -->wf 5192   ` cfv 5196  recscrecs 6281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-recs 6282
This theorem is referenced by:  tfrlemibex  6306  tfrlemiubacc  6307  tfrlemiex  6308
  Copyright terms: Public domain W3C validator