ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembfn Unicode version

Theorem tfr1onlembfn 6091
Description: Lemma for tfr1on 6097. The union of  B is a function defined on  x. (Contributed by Jim Kingdon, 15-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
tfr1onlembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1onlembacc.4  |-  ( ph  ->  D  e.  X )
tfr1onlembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfr1onlembfn  |-  ( ph  ->  U. B  Fn  D
)
Distinct variable groups:    A, f, g, h, x, z    D, f, g, x    f, G, x, y    f, X, x    ph, f, g, h, x, z    y, g, z    B, g, h, z, w    D, h, z    h, G, z, w, f, y, x    g, X, z
Allowed substitution hints:    ph( y, w)    A( y, w)    B( x, y, f)    D( y, w)    F( x, y, z, w, f, g, h)    G( g)    X( y, w, h)

Proof of Theorem tfr1onlembfn
StepHypRef Expression
1 tfr1on.f . . . . . 6  |-  F  = recs ( G )
2 tfr1on.g . . . . . 6  |-  ( ph  ->  Fun  G )
3 tfr1on.x . . . . . 6  |-  ( ph  ->  Ord  X )
4 tfr1on.ex . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
5 tfr1onlemsucfn.1 . . . . . 6  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
6 tfr1onlembacc.3 . . . . . 6  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
7 tfr1onlembacc.u . . . . . 6  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
8 tfr1onlembacc.4 . . . . . 6  |-  ( ph  ->  D  e.  X )
9 tfr1onlembacc.5 . . . . . 6  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembacc 6089 . . . . 5  |-  ( ph  ->  B  C_  A )
1110unissd 3672 . . . 4  |-  ( ph  ->  U. B  C_  U. A
)
125, 3tfr1onlemssrecs 6086 . . . 4  |-  ( ph  ->  U. A  C_ recs ( G ) )
1311, 12sstrd 3033 . . 3  |-  ( ph  ->  U. B  C_ recs ( G ) )
14 tfrfun 6067 . . 3  |-  Fun recs ( G )
15 funss 5020 . . 3  |-  ( U. B  C_ recs ( G )  ->  ( Fun recs ( G )  ->  Fun  U. B ) )
1613, 14, 15mpisyl 1380 . 2  |-  ( ph  ->  Fun  U. B )
17 simpr3 951 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  h  =  ( g  u.  { <. z ,  ( G `  g ) >. } ) )
18 simpl 107 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  D )  ->  ph )
193adantr 270 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  D )  ->  Ord  X )
20 simpr 108 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  D )  ->  z  e.  D )
218adantr 270 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  D )  ->  D  e.  X )
2220, 21jca 300 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  D )  ->  (
z  e.  D  /\  D  e.  X )
)
23 ordtr1 4206 . . . . . . . . . . . . . . . . . . 19  |-  ( Ord 
X  ->  ( (
z  e.  D  /\  D  e.  X )  ->  z  e.  X ) )
2419, 22, 23sylc 61 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  D )  ->  z  e.  X )
2518, 24jca 300 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  D )  ->  ( ph  /\  z  e.  X
) )
262ad2antrr 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  X )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  Fun  G )
273ad2antrr 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  X )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  Ord  X )
2843adant1r 1167 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  z  e.  X )  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )
29283adant1r 1167 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  z  e.  X )  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )
30 simplr 497 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  X )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  z  e.  X
)
31 simpr1 949 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  X )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  g  Fn  z
)
32 simpr2 950 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  X )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  g  e.  A
)
331, 26, 27, 29, 5, 30, 31, 32tfr1onlemsucfn 6087 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  X )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  Fn  suc  z )
3425, 33sylan 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  Fn  suc  z )
35 dffn2 5149 . . . . . . . . . . . . . . . 16  |-  ( ( g  u.  { <. z ,  ( G `  g ) >. } )  Fn  suc  z  <->  ( g  u.  { <. z ,  ( G `  g )
>. } ) : suc  z
--> _V )
3634, 35sylib 120 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) : suc  z
--> _V )
37 fssxp 5163 . . . . . . . . . . . . . . 15  |-  ( ( g  u.  { <. z ,  ( G `  g ) >. } ) : suc  z --> _V 
->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  C_  ( suc  z  X.  _V )
)
3836, 37syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  C_  ( suc  z  X.  _V )
)
39 ordelon 4201 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Ord  X  /\  D  e.  X )  ->  D  e.  On )
403, 8, 39syl2anc 403 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  D  e.  On )
41 eloni 4193 . . . . . . . . . . . . . . . . . 18  |-  ( D  e.  On  ->  Ord  D )
4240, 41syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Ord  D )
4342ad2antrr 472 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  Ord  D )
44 simplr 497 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  z  e.  D
)
45 ordsucss 4311 . . . . . . . . . . . . . . . 16  |-  ( Ord 
D  ->  ( z  e.  D  ->  suc  z  C_  D ) )
4643, 44, 45sylc 61 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  suc  z  C_  D )
47 xpss1 4536 . . . . . . . . . . . . . . 15  |-  ( suc  z  C_  D  ->  ( suc  z  X.  _V )  C_  ( D  X.  _V ) )
4846, 47syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( suc  z  X.  _V )  C_  ( D  X.  _V ) )
4938, 48sstrd 3033 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  C_  ( D  X.  _V ) )
50 vex 2622 . . . . . . . . . . . . . . 15  |-  g  e. 
_V
51 vex 2622 . . . . . . . . . . . . . . . . 17  |-  z  e. 
_V
5218adantr 270 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ph )
5324adantr 270 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  z  e.  X
)
54 simpr1 949 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  g  Fn  z
)
55 fneq2 5089 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  z  ->  (
f  Fn  x  <->  f  Fn  z ) )
5655imbi1d 229 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  z  ->  (
( f  Fn  x  ->  ( G `  f
)  e.  _V )  <->  ( f  Fn  z  -> 
( G `  f
)  e.  _V )
) )
5756albidv 1752 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( A. f ( f  Fn  x  ->  ( G `  f )  e.  _V ) 
<-> 
A. f ( f  Fn  z  ->  ( G `  f )  e.  _V ) ) )
5843expia 1145 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  X )  ->  (
f  Fn  x  -> 
( G `  f
)  e.  _V )
)
5958alrimiv 1802 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f  Fn  x  ->  ( G `  f
)  e.  _V )
)
6059ralrimiva 2446 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  A. x  e.  X  A. f ( f  Fn  x  ->  ( G `  f )  e.  _V ) )
61603ad2ant1 964 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  X  /\  g  Fn  z
)  ->  A. x  e.  X  A. f
( f  Fn  x  ->  ( G `  f
)  e.  _V )
)
62 simp2 944 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  X  /\  g  Fn  z
)  ->  z  e.  X )
6357, 61, 62rspcdva 2727 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  X  /\  g  Fn  z
)  ->  A. f
( f  Fn  z  ->  ( G `  f
)  e.  _V )
)
64 simp3 945 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  X  /\  g  Fn  z
)  ->  g  Fn  z )
65 fneq1 5088 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  g  ->  (
f  Fn  z  <->  g  Fn  z ) )
66 fveq2 5289 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  =  g  ->  ( G `  f )  =  ( G `  g ) )
6766eleq1d 2156 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  g  ->  (
( G `  f
)  e.  _V  <->  ( G `  g )  e.  _V ) )
6865, 67imbi12d 232 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  g  ->  (
( f  Fn  z  ->  ( G `  f
)  e.  _V )  <->  ( g  Fn  z  -> 
( G `  g
)  e.  _V )
) )
6968spv 1788 . . . . . . . . . . . . . . . . . . 19  |-  ( A. f ( f  Fn  z  ->  ( G `  f )  e.  _V )  ->  ( g  Fn  z  ->  ( G `  g )  e.  _V ) )
7063, 64, 69sylc 61 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  X  /\  g  Fn  z
)  ->  ( G `  g )  e.  _V )
7152, 53, 54, 70syl3anc 1174 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( G `  g )  e.  _V )
72 opexg 4046 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  _V  /\  ( G `  g )  e.  _V )  ->  <. z ,  ( G `
 g ) >.  e.  _V )
7351, 71, 72sylancr 405 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  <. z ,  ( G `  g )
>.  e.  _V )
74 snexg 4010 . . . . . . . . . . . . . . . 16  |-  ( <.
z ,  ( G `
 g ) >.  e.  _V  ->  { <. z ,  ( G `  g ) >. }  e.  _V )
7573, 74syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  { <. z ,  ( G `  g ) >. }  e.  _V )
76 unexg 4259 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  _V  /\  {
<. z ,  ( G `
 g ) >. }  e.  _V )  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  e.  _V )
7750, 75, 76sylancr 405 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  e.  _V )
78 elpwg 3433 . . . . . . . . . . . . . 14  |-  ( ( g  u.  { <. z ,  ( G `  g ) >. } )  e.  _V  ->  (
( g  u.  { <. z ,  ( G `
 g ) >. } )  e.  ~P ( D  X.  _V )  <->  ( g  u.  { <. z ,  ( G `  g ) >. } ) 
C_  ( D  X.  _V ) ) )
7977, 78syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( ( g  u.  { <. z ,  ( G `  g ) >. } )  e.  ~P ( D  X.  _V )  <->  ( g  u.  { <. z ,  ( G `  g )
>. } )  C_  ( D  X.  _V ) ) )
8049, 79mpbird 165 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  e.  ~P ( D  X.  _V )
)
8117, 80eqeltrd 2164 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  h  e.  ~P ( D  X.  _V )
)
8281ex 113 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  D )  ->  (
( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) )  ->  h  e.  ~P ( D  X.  _V ) ) )
8382exlimdv 1747 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  D )  ->  ( E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) )  ->  h  e.  ~P ( D  X.  _V ) ) )
8483rexlimdva 2489 . . . . . . . 8  |-  ( ph  ->  ( E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) )  ->  h  e.  ~P ( D  X.  _V ) ) )
8584abssdv 3093 . . . . . . 7  |-  ( ph  ->  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) } 
C_  ~P ( D  X.  _V ) )
866, 85syl5eqss 3068 . . . . . 6  |-  ( ph  ->  B  C_  ~P ( D  X.  _V ) )
87 sspwuni 3808 . . . . . 6  |-  ( B 
C_  ~P ( D  X.  _V )  <->  U. B  C_  ( D  X.  _V ) )
8886, 87sylib 120 . . . . 5  |-  ( ph  ->  U. B  C_  ( D  X.  _V ) )
89 dmss 4623 . . . . 5  |-  ( U. B  C_  ( D  X.  _V )  ->  dom  U. B  C_  dom  ( D  X.  _V ) )
9088, 89syl 14 . . . 4  |-  ( ph  ->  dom  U. B  C_  dom  ( D  X.  _V ) )
91 dmxpss 4848 . . . 4  |-  dom  ( D  X.  _V )  C_  D
9290, 91syl6ss 3035 . . 3  |-  ( ph  ->  dom  U. B  C_  D )
931, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembxssdm 6090 . . 3  |-  ( ph  ->  D  C_  dom  U. B
)
9492, 93eqssd 3040 . 2  |-  ( ph  ->  dom  U. B  =  D )
95 df-fn 5005 . 2  |-  ( U. B  Fn  D  <->  ( Fun  U. B  /\  dom  U. B  =  D )
)
9616, 94, 95sylanbrc 408 1  |-  ( ph  ->  U. B  Fn  D
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924   A.wal 1287    = wceq 1289   E.wex 1426    e. wcel 1438   {cab 2074   A.wral 2359   E.wrex 2360   _Vcvv 2619    u. cun 2995    C_ wss 2997   ~Pcpw 3425   {csn 3441   <.cop 3444   U.cuni 3648   Ord word 4180   Oncon0 4181   suc csuc 4183    X. cxp 4426   dom cdm 4428    |` cres 4430   Fun wfun 4996    Fn wfn 4997   -->wf 4998   ` cfv 5002  recscrecs 6051
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-suc 4189  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-recs 6052
This theorem is referenced by:  tfr1onlembex  6092  tfr1onlemubacc  6093  tfr1onlemex  6094
  Copyright terms: Public domain W3C validator