ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembfn Unicode version

Theorem tfr1onlembfn 6209
Description: Lemma for tfr1on 6215. The union of  B is a function defined on  x. (Contributed by Jim Kingdon, 15-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
tfr1onlembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1onlembacc.4  |-  ( ph  ->  D  e.  X )
tfr1onlembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfr1onlembfn  |-  ( ph  ->  U. B  Fn  D
)
Distinct variable groups:    A, f, g, h, x, z    D, f, g, x    f, G, x, y    f, X, x    ph, f, g, h, x, z    y, g, z    B, g, h, z, w    D, h, z    h, G, z, w, f, y, x    g, X, z
Allowed substitution hints:    ph( y, w)    A( y, w)    B( x, y, f)    D( y, w)    F( x, y, z, w, f, g, h)    G( g)    X( y, w, h)

Proof of Theorem tfr1onlembfn
StepHypRef Expression
1 tfr1on.f . . . . . 6  |-  F  = recs ( G )
2 tfr1on.g . . . . . 6  |-  ( ph  ->  Fun  G )
3 tfr1on.x . . . . . 6  |-  ( ph  ->  Ord  X )
4 tfr1on.ex . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
5 tfr1onlemsucfn.1 . . . . . 6  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
6 tfr1onlembacc.3 . . . . . 6  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
7 tfr1onlembacc.u . . . . . 6  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
8 tfr1onlembacc.4 . . . . . 6  |-  ( ph  ->  D  e.  X )
9 tfr1onlembacc.5 . . . . . 6  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembacc 6207 . . . . 5  |-  ( ph  ->  B  C_  A )
1110unissd 3730 . . . 4  |-  ( ph  ->  U. B  C_  U. A
)
125, 3tfr1onlemssrecs 6204 . . . 4  |-  ( ph  ->  U. A  C_ recs ( G ) )
1311, 12sstrd 3077 . . 3  |-  ( ph  ->  U. B  C_ recs ( G ) )
14 tfrfun 6185 . . 3  |-  Fun recs ( G )
15 funss 5112 . . 3  |-  ( U. B  C_ recs ( G )  ->  ( Fun recs ( G )  ->  Fun  U. B ) )
1613, 14, 15mpisyl 1407 . 2  |-  ( ph  ->  Fun  U. B )
17 simpr3 974 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  h  =  ( g  u.  { <. z ,  ( G `  g ) >. } ) )
18 simpl 108 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  D )  ->  ph )
193adantr 274 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  D )  ->  Ord  X )
20 simpr 109 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  D )  ->  z  e.  D )
218adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  D )  ->  D  e.  X )
2220, 21jca 304 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  D )  ->  (
z  e.  D  /\  D  e.  X )
)
23 ordtr1 4280 . . . . . . . . . . . . . . . . . . 19  |-  ( Ord 
X  ->  ( (
z  e.  D  /\  D  e.  X )  ->  z  e.  X ) )
2419, 22, 23sylc 62 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  D )  ->  z  e.  X )
2518, 24jca 304 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  D )  ->  ( ph  /\  z  e.  X
) )
262ad2antrr 479 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  X )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  Fun  G )
273ad2antrr 479 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  X )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  Ord  X )
2843adant1r 1194 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  z  e.  X )  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )
29283adant1r 1194 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  z  e.  X )  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )
30 simplr 504 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  X )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  z  e.  X
)
31 simpr1 972 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  X )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  g  Fn  z
)
32 simpr2 973 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  X )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  g  e.  A
)
331, 26, 27, 29, 5, 30, 31, 32tfr1onlemsucfn 6205 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  X )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  Fn  suc  z )
3425, 33sylan 281 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  Fn  suc  z )
35 dffn2 5244 . . . . . . . . . . . . . . . 16  |-  ( ( g  u.  { <. z ,  ( G `  g ) >. } )  Fn  suc  z  <->  ( g  u.  { <. z ,  ( G `  g )
>. } ) : suc  z
--> _V )
3634, 35sylib 121 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) : suc  z
--> _V )
37 fssxp 5260 . . . . . . . . . . . . . . 15  |-  ( ( g  u.  { <. z ,  ( G `  g ) >. } ) : suc  z --> _V 
->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  C_  ( suc  z  X.  _V )
)
3836, 37syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  C_  ( suc  z  X.  _V )
)
39 ordelon 4275 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Ord  X  /\  D  e.  X )  ->  D  e.  On )
403, 8, 39syl2anc 408 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  D  e.  On )
41 eloni 4267 . . . . . . . . . . . . . . . . . 18  |-  ( D  e.  On  ->  Ord  D )
4240, 41syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Ord  D )
4342ad2antrr 479 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  Ord  D )
44 simplr 504 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  z  e.  D
)
45 ordsucss 4390 . . . . . . . . . . . . . . . 16  |-  ( Ord 
D  ->  ( z  e.  D  ->  suc  z  C_  D ) )
4643, 44, 45sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  suc  z  C_  D )
47 xpss1 4619 . . . . . . . . . . . . . . 15  |-  ( suc  z  C_  D  ->  ( suc  z  X.  _V )  C_  ( D  X.  _V ) )
4846, 47syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( suc  z  X.  _V )  C_  ( D  X.  _V ) )
4938, 48sstrd 3077 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  C_  ( D  X.  _V ) )
50 vex 2663 . . . . . . . . . . . . . . 15  |-  g  e. 
_V
51 vex 2663 . . . . . . . . . . . . . . . . 17  |-  z  e. 
_V
5218adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ph )
5324adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  z  e.  X
)
54 simpr1 972 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  g  Fn  z
)
55 fneq2 5182 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  z  ->  (
f  Fn  x  <->  f  Fn  z ) )
5655imbi1d 230 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  z  ->  (
( f  Fn  x  ->  ( G `  f
)  e.  _V )  <->  ( f  Fn  z  -> 
( G `  f
)  e.  _V )
) )
5756albidv 1780 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( A. f ( f  Fn  x  ->  ( G `  f )  e.  _V ) 
<-> 
A. f ( f  Fn  z  ->  ( G `  f )  e.  _V ) ) )
5843expia 1168 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  X )  ->  (
f  Fn  x  -> 
( G `  f
)  e.  _V )
)
5958alrimiv 1830 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f  Fn  x  ->  ( G `  f
)  e.  _V )
)
6059ralrimiva 2482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  A. x  e.  X  A. f ( f  Fn  x  ->  ( G `  f )  e.  _V ) )
61603ad2ant1 987 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  X  /\  g  Fn  z
)  ->  A. x  e.  X  A. f
( f  Fn  x  ->  ( G `  f
)  e.  _V )
)
62 simp2 967 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  X  /\  g  Fn  z
)  ->  z  e.  X )
6357, 61, 62rspcdva 2768 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  X  /\  g  Fn  z
)  ->  A. f
( f  Fn  z  ->  ( G `  f
)  e.  _V )
)
64 simp3 968 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  X  /\  g  Fn  z
)  ->  g  Fn  z )
65 fneq1 5181 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  g  ->  (
f  Fn  z  <->  g  Fn  z ) )
66 fveq2 5389 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  =  g  ->  ( G `  f )  =  ( G `  g ) )
6766eleq1d 2186 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  g  ->  (
( G `  f
)  e.  _V  <->  ( G `  g )  e.  _V ) )
6865, 67imbi12d 233 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  g  ->  (
( f  Fn  z  ->  ( G `  f
)  e.  _V )  <->  ( g  Fn  z  -> 
( G `  g
)  e.  _V )
) )
6968spv 1816 . . . . . . . . . . . . . . . . . . 19  |-  ( A. f ( f  Fn  z  ->  ( G `  f )  e.  _V )  ->  ( g  Fn  z  ->  ( G `  g )  e.  _V ) )
7063, 64, 69sylc 62 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  X  /\  g  Fn  z
)  ->  ( G `  g )  e.  _V )
7152, 53, 54, 70syl3anc 1201 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( G `  g )  e.  _V )
72 opexg 4120 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  _V  /\  ( G `  g )  e.  _V )  ->  <. z ,  ( G `
 g ) >.  e.  _V )
7351, 71, 72sylancr 410 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  <. z ,  ( G `  g )
>.  e.  _V )
74 snexg 4078 . . . . . . . . . . . . . . . 16  |-  ( <.
z ,  ( G `
 g ) >.  e.  _V  ->  { <. z ,  ( G `  g ) >. }  e.  _V )
7573, 74syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  { <. z ,  ( G `  g ) >. }  e.  _V )
76 unexg 4334 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  _V  /\  {
<. z ,  ( G `
 g ) >. }  e.  _V )  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  e.  _V )
7750, 75, 76sylancr 410 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  e.  _V )
78 elpwg 3488 . . . . . . . . . . . . . 14  |-  ( ( g  u.  { <. z ,  ( G `  g ) >. } )  e.  _V  ->  (
( g  u.  { <. z ,  ( G `
 g ) >. } )  e.  ~P ( D  X.  _V )  <->  ( g  u.  { <. z ,  ( G `  g ) >. } ) 
C_  ( D  X.  _V ) ) )
7977, 78syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( ( g  u.  { <. z ,  ( G `  g ) >. } )  e.  ~P ( D  X.  _V )  <->  ( g  u.  { <. z ,  ( G `  g )
>. } )  C_  ( D  X.  _V ) ) )
8049, 79mpbird 166 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  e.  ~P ( D  X.  _V )
)
8117, 80eqeltrd 2194 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  h  e.  ~P ( D  X.  _V )
)
8281ex 114 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  D )  ->  (
( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) )  ->  h  e.  ~P ( D  X.  _V ) ) )
8382exlimdv 1775 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  D )  ->  ( E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) )  ->  h  e.  ~P ( D  X.  _V ) ) )
8483rexlimdva 2526 . . . . . . . 8  |-  ( ph  ->  ( E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) )  ->  h  e.  ~P ( D  X.  _V ) ) )
8584abssdv 3141 . . . . . . 7  |-  ( ph  ->  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) } 
C_  ~P ( D  X.  _V ) )
866, 85eqsstrid 3113 . . . . . 6  |-  ( ph  ->  B  C_  ~P ( D  X.  _V ) )
87 sspwuni 3867 . . . . . 6  |-  ( B 
C_  ~P ( D  X.  _V )  <->  U. B  C_  ( D  X.  _V ) )
8886, 87sylib 121 . . . . 5  |-  ( ph  ->  U. B  C_  ( D  X.  _V ) )
89 dmss 4708 . . . . 5  |-  ( U. B  C_  ( D  X.  _V )  ->  dom  U. B  C_  dom  ( D  X.  _V ) )
9088, 89syl 14 . . . 4  |-  ( ph  ->  dom  U. B  C_  dom  ( D  X.  _V ) )
91 dmxpss 4939 . . . 4  |-  dom  ( D  X.  _V )  C_  D
9290, 91sstrdi 3079 . . 3  |-  ( ph  ->  dom  U. B  C_  D )
931, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembxssdm 6208 . . 3  |-  ( ph  ->  D  C_  dom  U. B
)
9492, 93eqssd 3084 . 2  |-  ( ph  ->  dom  U. B  =  D )
95 df-fn 5096 . 2  |-  ( U. B  Fn  D  <->  ( Fun  U. B  /\  dom  U. B  =  D )
)
9616, 94, 95sylanbrc 413 1  |-  ( ph  ->  U. B  Fn  D
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947   A.wal 1314    = wceq 1316   E.wex 1453    e. wcel 1465   {cab 2103   A.wral 2393   E.wrex 2394   _Vcvv 2660    u. cun 3039    C_ wss 3041   ~Pcpw 3480   {csn 3497   <.cop 3500   U.cuni 3706   Ord word 4254   Oncon0 4255   suc csuc 4257    X. cxp 4507   dom cdm 4509    |` cres 4511   Fun wfun 5087    Fn wfn 5088   -->wf 5089   ` cfv 5093  recscrecs 6169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-recs 6170
This theorem is referenced by:  tfr1onlembex  6210  tfr1onlemubacc  6211  tfr1onlemex  6212
  Copyright terms: Public domain W3C validator