ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpo Unicode version

Theorem fnmpo 6260
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypothesis
Ref Expression
fmpo.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
fnmpo  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  F  Fn  ( A  X.  B
) )
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    C( x, y)    F( x, y)    V( x, y)

Proof of Theorem fnmpo
StepHypRef Expression
1 elex 2774 . . . 4  |-  ( C  e.  V  ->  C  e.  _V )
21ralimi 2560 . . 3  |-  ( A. y  e.  B  C  e.  V  ->  A. y  e.  B  C  e.  _V )
32ralimi 2560 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  A. x  e.  A  A. y  e.  B  C  e.  _V )
4 fmpo.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
54fmpo 6259 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  _V  <->  F : ( A  X.  B ) --> _V )
6 dffn2 5409 . . 3  |-  ( F  Fn  ( A  X.  B )  <->  F :
( A  X.  B
) --> _V )
75, 6bitr4i 187 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  _V  <->  F  Fn  ( A  X.  B ) )
83, 7sylib 122 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  F  Fn  ( A  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    X. cxp 4661    Fn wfn 5253   -->wf 5254    e. cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199
This theorem is referenced by:  fnmpoi  6261  dmmpoga  6266  fnmpoovd  6273  f1od2  6293  mpomulf  8016  divfnzn  9695  cnref1o  9725  plusffng  13008  mulgfng  13254  rhmfn  13728  scaffng  13865  hmeofn  14538
  Copyright terms: Public domain W3C validator