ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpo Unicode version

Theorem fnmpo 6348
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypothesis
Ref Expression
fmpo.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
fnmpo  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  F  Fn  ( A  X.  B
) )
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    C( x, y)    F( x, y)    V( x, y)

Proof of Theorem fnmpo
StepHypRef Expression
1 elex 2811 . . . 4  |-  ( C  e.  V  ->  C  e.  _V )
21ralimi 2593 . . 3  |-  ( A. y  e.  B  C  e.  V  ->  A. y  e.  B  C  e.  _V )
32ralimi 2593 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  A. x  e.  A  A. y  e.  B  C  e.  _V )
4 fmpo.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
54fmpo 6347 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  _V  <->  F : ( A  X.  B ) --> _V )
6 dffn2 5475 . . 3  |-  ( F  Fn  ( A  X.  B )  <->  F :
( A  X.  B
) --> _V )
75, 6bitr4i 187 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  _V  <->  F  Fn  ( A  X.  B ) )
83, 7sylib 122 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  F  Fn  ( A  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    X. cxp 4717    Fn wfn 5313   -->wf 5314    e. cmpo 6003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287
This theorem is referenced by:  fnmpoi  6349  dmmpoga  6354  fnmpoovd  6361  f1od2  6381  mpomulf  8136  divfnzn  9816  cnref1o  9846  fnpfx  11209  plusffng  13398  mulgfng  13661  rhmfn  14136  scaffng  14273  hmeofn  14976
  Copyright terms: Public domain W3C validator