ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpo Unicode version

Theorem fnmpo 6288
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypothesis
Ref Expression
fmpo.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
fnmpo  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  F  Fn  ( A  X.  B
) )
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    C( x, y)    F( x, y)    V( x, y)

Proof of Theorem fnmpo
StepHypRef Expression
1 elex 2783 . . . 4  |-  ( C  e.  V  ->  C  e.  _V )
21ralimi 2569 . . 3  |-  ( A. y  e.  B  C  e.  V  ->  A. y  e.  B  C  e.  _V )
32ralimi 2569 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  A. x  e.  A  A. y  e.  B  C  e.  _V )
4 fmpo.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
54fmpo 6287 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  _V  <->  F : ( A  X.  B ) --> _V )
6 dffn2 5427 . . 3  |-  ( F  Fn  ( A  X.  B )  <->  F :
( A  X.  B
) --> _V )
75, 6bitr4i 187 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  _V  <->  F  Fn  ( A  X.  B ) )
83, 7sylib 122 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  F  Fn  ( A  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772    X. cxp 4673    Fn wfn 5266   -->wf 5267    e. cmpo 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227
This theorem is referenced by:  fnmpoi  6289  dmmpoga  6294  fnmpoovd  6301  f1od2  6321  mpomulf  8062  divfnzn  9742  cnref1o  9772  plusffng  13197  mulgfng  13460  rhmfn  13934  scaffng  14071  hmeofn  14774
  Copyright terms: Public domain W3C validator