![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difin2 | GIF version |
Description: Represent a set difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
difin2 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3055 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
2 | 1 | pm4.71d 388 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) |
3 | 2 | anbi1d 458 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵))) |
4 | eldif 3044 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
5 | elin 3223 | . . . 4 ⊢ (𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴) ↔ (𝑥 ∈ (𝐶 ∖ 𝐵) ∧ 𝑥 ∈ 𝐴)) | |
6 | eldif 3044 | . . . . 5 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
7 | 6 | anbi1i 451 | . . . 4 ⊢ ((𝑥 ∈ (𝐶 ∖ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴)) |
8 | ancom 264 | . . . . 5 ⊢ (((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) | |
9 | anass 396 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) | |
10 | 8, 9 | bitr4i 186 | . . . 4 ⊢ (((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵)) |
11 | 5, 7, 10 | 3bitri 205 | . . 3 ⊢ (𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵)) |
12 | 3, 4, 11 | 3bitr4g 222 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ 𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴))) |
13 | 12 | eqrdv 2111 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1312 ∈ wcel 1461 ∖ cdif 3032 ∩ cin 3034 ⊆ wss 3035 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-dif 3037 df-in 3041 df-ss 3048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |