| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difin2 | GIF version | ||
| Description: Represent a set difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| difin2 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3189 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 2 | 1 | pm4.71d 393 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) |
| 3 | 2 | anbi1d 465 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵))) |
| 4 | eldif 3177 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 5 | elin 3358 | . . . 4 ⊢ (𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴) ↔ (𝑥 ∈ (𝐶 ∖ 𝐵) ∧ 𝑥 ∈ 𝐴)) | |
| 6 | eldif 3177 | . . . . 5 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 7 | 6 | anbi1i 458 | . . . 4 ⊢ ((𝑥 ∈ (𝐶 ∖ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴)) |
| 8 | ancom 266 | . . . . 5 ⊢ (((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) | |
| 9 | anass 401 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) | |
| 10 | 8, 9 | bitr4i 187 | . . . 4 ⊢ (((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵)) |
| 11 | 5, 7, 10 | 3bitri 206 | . . 3 ⊢ (𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵)) |
| 12 | 3, 4, 11 | 3bitr4g 223 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ 𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴))) |
| 13 | 12 | eqrdv 2204 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∖ cdif 3165 ∩ cin 3167 ⊆ wss 3168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3170 df-in 3174 df-ss 3181 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |