ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difpreima Unicode version

Theorem difpreima 5730
Description: Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016.)
Assertion
Ref Expression
difpreima  |-  ( Fun 
F  ->  ( `' F " ( A  \  B ) )  =  ( ( `' F " A )  \  ( `' F " B ) ) )

Proof of Theorem difpreima
StepHypRef Expression
1 funcnvcnv 5352 . 2  |-  ( Fun 
F  ->  Fun  `' `' F )
2 imadif 5373 . 2  |-  ( Fun  `' `' F  ->  ( `' F " ( A 
\  B ) )  =  ( ( `' F " A ) 
\  ( `' F " B ) ) )
31, 2syl 14 1  |-  ( Fun 
F  ->  ( `' F " ( A  \  B ) )  =  ( ( `' F " A )  \  ( `' F " B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    \ cdif 3171   `'ccnv 4692   "cima 4696   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-fun 5292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator