ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvcnv Unicode version

Theorem funcnvcnv 5318
Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
Assertion
Ref Expression
funcnvcnv  |-  ( Fun 
A  ->  Fun  `' `' A )

Proof of Theorem funcnvcnv
StepHypRef Expression
1 cnvcnvss 5125 . 2  |-  `' `' A  C_  A
2 funss 5278 . 2  |-  ( `' `' A  C_  A  -> 
( Fun  A  ->  Fun  `' `' A ) )
31, 2ax-mp 5 1  |-  ( Fun 
A  ->  Fun  `' `' A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3157   `'ccnv 4663   Fun wfun 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-fun 5261
This theorem is referenced by:  funcnvres2  5334  inpreima  5691  difpreima  5692  f1oresrab  5730  sbthlemi8  7039  caseinj  7164  djuinj  7181  cnclima  14543
  Copyright terms: Public domain W3C validator