ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  respreima Unicode version

Theorem respreima 5427
Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
respreima  |-  ( Fun 
F  ->  ( `' ( F  |`  B )
" A )  =  ( ( `' F " A )  i^i  B
) )

Proof of Theorem respreima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funfn 5045 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 elin 3183 . . . . . . . . 9  |-  ( x  e.  ( B  i^i  dom 
F )  <->  ( x  e.  B  /\  x  e.  dom  F ) )
3 ancom 262 . . . . . . . . 9  |-  ( ( x  e.  B  /\  x  e.  dom  F )  <-> 
( x  e.  dom  F  /\  x  e.  B
) )
42, 3bitri 182 . . . . . . . 8  |-  ( x  e.  ( B  i^i  dom 
F )  <->  ( x  e.  dom  F  /\  x  e.  B ) )
54anbi1i 446 . . . . . . 7  |-  ( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x
)  e.  A )  <-> 
( ( x  e. 
dom  F  /\  x  e.  B )  /\  (
( F  |`  B ) `
 x )  e.  A ) )
6 fvres 5329 . . . . . . . . . 10  |-  ( x  e.  B  ->  (
( F  |`  B ) `
 x )  =  ( F `  x
) )
76eleq1d 2156 . . . . . . . . 9  |-  ( x  e.  B  ->  (
( ( F  |`  B ) `  x
)  e.  A  <->  ( F `  x )  e.  A
) )
87adantl 271 . . . . . . . 8  |-  ( ( x  e.  dom  F  /\  x  e.  B
)  ->  ( (
( F  |`  B ) `
 x )  e.  A  <->  ( F `  x )  e.  A
) )
98pm5.32i 442 . . . . . . 7  |-  ( ( ( x  e.  dom  F  /\  x  e.  B
)  /\  ( ( F  |`  B ) `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  x  e.  B )  /\  ( F `  x
)  e.  A ) )
105, 9bitri 182 . . . . . 6  |-  ( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x
)  e.  A )  <-> 
( ( x  e. 
dom  F  /\  x  e.  B )  /\  ( F `  x )  e.  A ) )
1110a1i 9 . . . . 5  |-  ( F  Fn  dom  F  -> 
( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  x  e.  B )  /\  ( F `  x
)  e.  A ) ) )
12 an32 529 . . . . 5  |-  ( ( ( x  e.  dom  F  /\  x  e.  B
)  /\  ( F `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  /\  x  e.  B )
)
1311, 12syl6bb 194 . . . 4  |-  ( F  Fn  dom  F  -> 
( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  /\  x  e.  B )
) )
14 fnfun 5111 . . . . . . . 8  |-  ( F  Fn  dom  F  ->  Fun  F )
15 funres 5055 . . . . . . . 8  |-  ( Fun 
F  ->  Fun  ( F  |`  B ) )
1614, 15syl 14 . . . . . . 7  |-  ( F  Fn  dom  F  ->  Fun  ( F  |`  B ) )
17 dmres 4734 . . . . . . 7  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
1816, 17jctir 306 . . . . . 6  |-  ( F  Fn  dom  F  -> 
( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  ( B  i^i  dom 
F ) ) )
19 df-fn 5018 . . . . . 6  |-  ( ( F  |`  B )  Fn  ( B  i^i  dom  F )  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  ( B  i^i  dom 
F ) ) )
2018, 19sylibr 132 . . . . 5  |-  ( F  Fn  dom  F  -> 
( F  |`  B )  Fn  ( B  i^i  dom 
F ) )
21 elpreima 5418 . . . . 5  |-  ( ( F  |`  B )  Fn  ( B  i^i  dom  F )  ->  ( x  e.  ( `' ( F  |`  B ) " A
)  <->  ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
) ) )
2220, 21syl 14 . . . 4  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' ( F  |`  B ) " A
)  <->  ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
) ) )
23 elin 3183 . . . . 5  |-  ( x  e.  ( ( `' F " A )  i^i  B )  <->  ( x  e.  ( `' F " A )  /\  x  e.  B ) )
24 elpreima 5418 . . . . . 6  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' F " A )  <-> 
( x  e.  dom  F  /\  ( F `  x )  e.  A
) ) )
2524anbi1d 453 . . . . 5  |-  ( F  Fn  dom  F  -> 
( ( x  e.  ( `' F " A )  /\  x  e.  B )  <->  ( (
x  e.  dom  F  /\  ( F `  x
)  e.  A )  /\  x  e.  B
) ) )
2623, 25syl5bb 190 . . . 4  |-  ( F  Fn  dom  F  -> 
( x  e.  ( ( `' F " A )  i^i  B
)  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  /\  x  e.  B )
) )
2713, 22, 263bitr4d 218 . . 3  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' ( F  |`  B ) " A
)  <->  x  e.  (
( `' F " A )  i^i  B
) ) )
281, 27sylbi 119 . 2  |-  ( Fun 
F  ->  ( x  e.  ( `' ( F  |`  B ) " A
)  <->  x  e.  (
( `' F " A )  i^i  B
) ) )
2928eqrdv 2086 1  |-  ( Fun 
F  ->  ( `' ( F  |`  B )
" A )  =  ( ( `' F " A )  i^i  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438    i^i cin 2998   `'ccnv 4437   dom cdm 4438    |` cres 4440   "cima 4441   Fun wfun 5009    Fn wfn 5010   ` cfv 5015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-fv 5023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator