Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > respreima | Unicode version |
Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
respreima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 5228 | . . 3 | |
2 | elin 3310 | . . . . . . . . 9 | |
3 | ancom 264 | . . . . . . . . 9 | |
4 | 2, 3 | bitri 183 | . . . . . . . 8 |
5 | 4 | anbi1i 455 | . . . . . . 7 |
6 | fvres 5520 | . . . . . . . . . 10 | |
7 | 6 | eleq1d 2239 | . . . . . . . . 9 |
8 | 7 | adantl 275 | . . . . . . . 8 |
9 | 8 | pm5.32i 451 | . . . . . . 7 |
10 | 5, 9 | bitri 183 | . . . . . 6 |
11 | 10 | a1i 9 | . . . . 5 |
12 | an32 557 | . . . . 5 | |
13 | 11, 12 | bitrdi 195 | . . . 4 |
14 | fnfun 5295 | . . . . . . . 8 | |
15 | funres 5239 | . . . . . . . 8 | |
16 | 14, 15 | syl 14 | . . . . . . 7 |
17 | dmres 4912 | . . . . . . 7 | |
18 | 16, 17 | jctir 311 | . . . . . 6 |
19 | df-fn 5201 | . . . . . 6 | |
20 | 18, 19 | sylibr 133 | . . . . 5 |
21 | elpreima 5615 | . . . . 5 | |
22 | 20, 21 | syl 14 | . . . 4 |
23 | elin 3310 | . . . . 5 | |
24 | elpreima 5615 | . . . . . 6 | |
25 | 24 | anbi1d 462 | . . . . 5 |
26 | 23, 25 | syl5bb 191 | . . . 4 |
27 | 13, 22, 26 | 3bitr4d 219 | . . 3 |
28 | 1, 27 | sylbi 120 | . 2 |
29 | 28 | eqrdv 2168 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cin 3120 ccnv 4610 cdm 4611 cres 4613 cima 4614 wfun 5192 wfn 5193 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |