ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  respreima Unicode version

Theorem respreima 5548
Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
respreima  |-  ( Fun 
F  ->  ( `' ( F  |`  B )
" A )  =  ( ( `' F " A )  i^i  B
) )

Proof of Theorem respreima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funfn 5153 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 elin 3259 . . . . . . . . 9  |-  ( x  e.  ( B  i^i  dom 
F )  <->  ( x  e.  B  /\  x  e.  dom  F ) )
3 ancom 264 . . . . . . . . 9  |-  ( ( x  e.  B  /\  x  e.  dom  F )  <-> 
( x  e.  dom  F  /\  x  e.  B
) )
42, 3bitri 183 . . . . . . . 8  |-  ( x  e.  ( B  i^i  dom 
F )  <->  ( x  e.  dom  F  /\  x  e.  B ) )
54anbi1i 453 . . . . . . 7  |-  ( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x
)  e.  A )  <-> 
( ( x  e. 
dom  F  /\  x  e.  B )  /\  (
( F  |`  B ) `
 x )  e.  A ) )
6 fvres 5445 . . . . . . . . . 10  |-  ( x  e.  B  ->  (
( F  |`  B ) `
 x )  =  ( F `  x
) )
76eleq1d 2208 . . . . . . . . 9  |-  ( x  e.  B  ->  (
( ( F  |`  B ) `  x
)  e.  A  <->  ( F `  x )  e.  A
) )
87adantl 275 . . . . . . . 8  |-  ( ( x  e.  dom  F  /\  x  e.  B
)  ->  ( (
( F  |`  B ) `
 x )  e.  A  <->  ( F `  x )  e.  A
) )
98pm5.32i 449 . . . . . . 7  |-  ( ( ( x  e.  dom  F  /\  x  e.  B
)  /\  ( ( F  |`  B ) `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  x  e.  B )  /\  ( F `  x
)  e.  A ) )
105, 9bitri 183 . . . . . 6  |-  ( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x
)  e.  A )  <-> 
( ( x  e. 
dom  F  /\  x  e.  B )  /\  ( F `  x )  e.  A ) )
1110a1i 9 . . . . 5  |-  ( F  Fn  dom  F  -> 
( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  x  e.  B )  /\  ( F `  x
)  e.  A ) ) )
12 an32 551 . . . . 5  |-  ( ( ( x  e.  dom  F  /\  x  e.  B
)  /\  ( F `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  /\  x  e.  B )
)
1311, 12syl6bb 195 . . . 4  |-  ( F  Fn  dom  F  -> 
( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  /\  x  e.  B )
) )
14 fnfun 5220 . . . . . . . 8  |-  ( F  Fn  dom  F  ->  Fun  F )
15 funres 5164 . . . . . . . 8  |-  ( Fun 
F  ->  Fun  ( F  |`  B ) )
1614, 15syl 14 . . . . . . 7  |-  ( F  Fn  dom  F  ->  Fun  ( F  |`  B ) )
17 dmres 4840 . . . . . . 7  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
1816, 17jctir 311 . . . . . 6  |-  ( F  Fn  dom  F  -> 
( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  ( B  i^i  dom 
F ) ) )
19 df-fn 5126 . . . . . 6  |-  ( ( F  |`  B )  Fn  ( B  i^i  dom  F )  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  ( B  i^i  dom 
F ) ) )
2018, 19sylibr 133 . . . . 5  |-  ( F  Fn  dom  F  -> 
( F  |`  B )  Fn  ( B  i^i  dom 
F ) )
21 elpreima 5539 . . . . 5  |-  ( ( F  |`  B )  Fn  ( B  i^i  dom  F )  ->  ( x  e.  ( `' ( F  |`  B ) " A
)  <->  ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
) ) )
2220, 21syl 14 . . . 4  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' ( F  |`  B ) " A
)  <->  ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
) ) )
23 elin 3259 . . . . 5  |-  ( x  e.  ( ( `' F " A )  i^i  B )  <->  ( x  e.  ( `' F " A )  /\  x  e.  B ) )
24 elpreima 5539 . . . . . 6  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' F " A )  <-> 
( x  e.  dom  F  /\  ( F `  x )  e.  A
) ) )
2524anbi1d 460 . . . . 5  |-  ( F  Fn  dom  F  -> 
( ( x  e.  ( `' F " A )  /\  x  e.  B )  <->  ( (
x  e.  dom  F  /\  ( F `  x
)  e.  A )  /\  x  e.  B
) ) )
2623, 25syl5bb 191 . . . 4  |-  ( F  Fn  dom  F  -> 
( x  e.  ( ( `' F " A )  i^i  B
)  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  /\  x  e.  B )
) )
2713, 22, 263bitr4d 219 . . 3  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' ( F  |`  B ) " A
)  <->  x  e.  (
( `' F " A )  i^i  B
) ) )
281, 27sylbi 120 . 2  |-  ( Fun 
F  ->  ( x  e.  ( `' ( F  |`  B ) " A
)  <->  x  e.  (
( `' F " A )  i^i  B
) ) )
2928eqrdv 2137 1  |-  ( Fun 
F  ->  ( `' ( F  |`  B )
" A )  =  ( ( `' F " A )  i^i  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480    i^i cin 3070   `'ccnv 4538   dom cdm 4539    |` cres 4541   "cima 4542   Fun wfun 5117    Fn wfn 5118   ` cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator