| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > respreima | Unicode version | ||
| Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| respreima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 5347 |
. . 3
| |
| 2 | elin 3387 |
. . . . . . . . 9
| |
| 3 | ancom 266 |
. . . . . . . . 9
| |
| 4 | 2, 3 | bitri 184 |
. . . . . . . 8
|
| 5 | 4 | anbi1i 458 |
. . . . . . 7
|
| 6 | fvres 5650 |
. . . . . . . . . 10
| |
| 7 | 6 | eleq1d 2298 |
. . . . . . . . 9
|
| 8 | 7 | adantl 277 |
. . . . . . . 8
|
| 9 | 8 | pm5.32i 454 |
. . . . . . 7
|
| 10 | 5, 9 | bitri 184 |
. . . . . 6
|
| 11 | 10 | a1i 9 |
. . . . 5
|
| 12 | an32 562 |
. . . . 5
| |
| 13 | 11, 12 | bitrdi 196 |
. . . 4
|
| 14 | fnfun 5417 |
. . . . . . . 8
| |
| 15 | funres 5358 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl 14 |
. . . . . . 7
|
| 17 | dmres 5025 |
. . . . . . 7
| |
| 18 | 16, 17 | jctir 313 |
. . . . . 6
|
| 19 | df-fn 5320 |
. . . . . 6
| |
| 20 | 18, 19 | sylibr 134 |
. . . . 5
|
| 21 | elpreima 5753 |
. . . . 5
| |
| 22 | 20, 21 | syl 14 |
. . . 4
|
| 23 | elin 3387 |
. . . . 5
| |
| 24 | elpreima 5753 |
. . . . . 6
| |
| 25 | 24 | anbi1d 465 |
. . . . 5
|
| 26 | 23, 25 | bitrid 192 |
. . . 4
|
| 27 | 13, 22, 26 | 3bitr4d 220 |
. . 3
|
| 28 | 1, 27 | sylbi 121 |
. 2
|
| 29 | 28 | eqrdv 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |