Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > respreima | Unicode version |
Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
respreima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 5218 | . . 3 | |
2 | elin 3305 | . . . . . . . . 9 | |
3 | ancom 264 | . . . . . . . . 9 | |
4 | 2, 3 | bitri 183 | . . . . . . . 8 |
5 | 4 | anbi1i 454 | . . . . . . 7 |
6 | fvres 5510 | . . . . . . . . . 10 | |
7 | 6 | eleq1d 2235 | . . . . . . . . 9 |
8 | 7 | adantl 275 | . . . . . . . 8 |
9 | 8 | pm5.32i 450 | . . . . . . 7 |
10 | 5, 9 | bitri 183 | . . . . . 6 |
11 | 10 | a1i 9 | . . . . 5 |
12 | an32 552 | . . . . 5 | |
13 | 11, 12 | bitrdi 195 | . . . 4 |
14 | fnfun 5285 | . . . . . . . 8 | |
15 | funres 5229 | . . . . . . . 8 | |
16 | 14, 15 | syl 14 | . . . . . . 7 |
17 | dmres 4905 | . . . . . . 7 | |
18 | 16, 17 | jctir 311 | . . . . . 6 |
19 | df-fn 5191 | . . . . . 6 | |
20 | 18, 19 | sylibr 133 | . . . . 5 |
21 | elpreima 5604 | . . . . 5 | |
22 | 20, 21 | syl 14 | . . . 4 |
23 | elin 3305 | . . . . 5 | |
24 | elpreima 5604 | . . . . . 6 | |
25 | 24 | anbi1d 461 | . . . . 5 |
26 | 23, 25 | syl5bb 191 | . . . 4 |
27 | 13, 22, 26 | 3bitr4d 219 | . . 3 |
28 | 1, 27 | sylbi 120 | . 2 |
29 | 28 | eqrdv 2163 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cin 3115 ccnv 4603 cdm 4604 cres 4606 cima 4607 wfun 5182 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |