| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr4id.2 |
|
| eqtr4id.1 |
|
| Ref | Expression |
|---|---|
| eqtr4id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4id.1 |
. 2
| |
| 2 | eqtr4id.2 |
. . 3
| |
| 3 | 2 | eqcomi 2200 |
. 2
|
| 4 | 1, 3 | eqtr2di 2246 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: iftrue 3567 iffalse 3570 difprsn1 3762 dmmptg 5168 relcoi1 5202 funimacnv 5335 dmmptd 5391 dffv3g 5557 dfimafn 5612 fvco2 5633 isoini 5868 iotaexel 5885 fvmpopr2d 6063 oprabco 6284 ixpconstg 6775 unfiexmid 6988 undifdc 6994 sbthlemi4 7035 sbthlemi5 7036 sbthlemi6 7037 supval2ti 7070 exmidfodomrlemim 7280 suplocexprlemex 7806 eqneg 8776 zeo 9448 fseq1p1m1 10186 seq3val 10569 seqvalcd 10570 hashfzo 10931 hashxp 10935 wrdval 10955 wrdnval 10982 fsumconst 11636 modfsummod 11640 telfsumo 11648 fprodconst 11802 mulgcd 12208 algcvg 12241 phiprmpw 12415 phisum 12434 strslfv3 12749 resseqnbasd 12776 pwssnf1o 13000 imasplusg 13010 imasmulr 13011 ismgmid 13079 pws0g 13153 dfrhm2 13786 subrg1 13863 2idlbas 14147 psrlinv 14312 uptx 14594 resubmet 14876 ply1termlem 15062 lgsval4lem 15336 lgsquadlem2 15403 m1lgs 15410 |
| Copyright terms: Public domain | W3C validator |