![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr4id | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr4id.2 |
![]() ![]() ![]() ![]() |
eqtr4id.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr4id |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4id.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqtr4id.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2193 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | eqtr2di 2239 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-cleq 2182 |
This theorem is referenced by: iftrue 3554 iffalse 3557 difprsn1 3746 dmmptg 5144 relcoi1 5178 funimacnv 5311 dmmptd 5365 dffv3g 5530 dfimafn 5585 fvco2 5606 isoini 5840 iotaexel 5857 oprabco 6243 ixpconstg 6734 unfiexmid 6947 undifdc 6953 sbthlemi4 6990 sbthlemi5 6991 sbthlemi6 6992 supval2ti 7025 exmidfodomrlemim 7231 suplocexprlemex 7752 eqneg 8720 zeo 9389 fseq1p1m1 10126 seq3val 10491 seqvalcd 10492 hashfzo 10837 hashxp 10841 fsumconst 11497 modfsummod 11501 telfsumo 11509 fprodconst 11663 mulgcd 12052 algcvg 12083 phiprmpw 12257 phisum 12275 strslfv3 12561 resseqnbasd 12588 imasplusg 12788 imasmulr 12789 ismgmid 12856 dfrhm2 13521 subrg1 13595 2idlbas 13847 uptx 14251 resubmet 14525 lgsval4lem 14890 m1lgs 14930 |
Copyright terms: Public domain | W3C validator |