| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr4id.2 |
|
| eqtr4id.1 |
|
| Ref | Expression |
|---|---|
| eqtr4id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4id.1 |
. 2
| |
| 2 | eqtr4id.2 |
. . 3
| |
| 3 | 2 | eqcomi 2210 |
. 2
|
| 4 | 1, 3 | eqtr2di 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: iftrue 3580 iffalse 3583 difprsn1 3778 dmmptg 5189 relcoi1 5223 funimacnv 5359 dmmptd 5416 dffv3g 5585 dfimafn 5640 fvco2 5661 isoini 5900 iotaexel 5917 fvmpopr2d 6095 oprabco 6316 ixpconstg 6807 unfiexmid 7030 undifdc 7036 sbthlemi4 7077 sbthlemi5 7078 sbthlemi6 7079 supval2ti 7112 exmidfodomrlemim 7325 suplocexprlemex 7855 eqneg 8825 zeo 9498 fseq1p1m1 10236 seq3val 10627 seqvalcd 10628 hashfzo 10989 hashxp 10993 wrdval 11019 wrdnval 11046 fsumconst 11840 modfsummod 11844 telfsumo 11852 fprodconst 12006 mulgcd 12412 algcvg 12445 phiprmpw 12619 phisum 12638 strslfv3 12953 resseqnbasd 12980 pwssnf1o 13205 imasplusg 13215 imasmulr 13216 ismgmid 13284 pws0g 13358 dfrhm2 13991 subrg1 14068 2idlbas 14352 psrbagfi 14510 psrlinv 14521 mplbascoe 14528 mplplusgg 14540 uptx 14821 resubmet 15103 ply1termlem 15289 lgsval4lem 15563 lgsquadlem2 15630 m1lgs 15637 |
| Copyright terms: Public domain | W3C validator |