| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr4id.2 |
|
| eqtr4id.1 |
|
| Ref | Expression |
|---|---|
| eqtr4id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4id.1 |
. 2
| |
| 2 | eqtr4id.2 |
. . 3
| |
| 3 | 2 | eqcomi 2208 |
. 2
|
| 4 | 1, 3 | eqtr2di 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: iftrue 3575 iffalse 3578 difprsn1 3771 dmmptg 5179 relcoi1 5213 funimacnv 5349 dmmptd 5405 dffv3g 5571 dfimafn 5626 fvco2 5647 isoini 5886 iotaexel 5903 fvmpopr2d 6081 oprabco 6302 ixpconstg 6793 unfiexmid 7014 undifdc 7020 sbthlemi4 7061 sbthlemi5 7062 sbthlemi6 7063 supval2ti 7096 exmidfodomrlemim 7308 suplocexprlemex 7834 eqneg 8804 zeo 9477 fseq1p1m1 10215 seq3val 10603 seqvalcd 10604 hashfzo 10965 hashxp 10969 wrdval 10995 wrdnval 11022 fsumconst 11707 modfsummod 11711 telfsumo 11719 fprodconst 11873 mulgcd 12279 algcvg 12312 phiprmpw 12486 phisum 12505 strslfv3 12820 resseqnbasd 12847 pwssnf1o 13072 imasplusg 13082 imasmulr 13083 ismgmid 13151 pws0g 13225 dfrhm2 13858 subrg1 13935 2idlbas 14219 psrbagfi 14377 psrlinv 14388 mplbascoe 14395 mplplusgg 14407 uptx 14688 resubmet 14970 ply1termlem 15156 lgsval4lem 15430 lgsquadlem2 15497 m1lgs 15504 |
| Copyright terms: Public domain | W3C validator |