Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr4id | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr4id.2 | |
eqtr4id.1 |
Ref | Expression |
---|---|
eqtr4id |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4id.1 | . 2 | |
2 | eqtr4id.2 | . . 3 | |
3 | 2 | eqcomi 2174 | . 2 |
4 | 1, 3 | eqtr2di 2220 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: iftrue 3531 iffalse 3534 difprsn1 3719 dmmptg 5108 relcoi1 5142 funimacnv 5274 dmmptd 5328 dffv3g 5492 dfimafn 5545 fvco2 5565 isoini 5797 oprabco 6196 ixpconstg 6685 unfiexmid 6895 undifdc 6901 sbthlemi4 6937 sbthlemi5 6938 sbthlemi6 6939 supval2ti 6972 exmidfodomrlemim 7178 suplocexprlemex 7684 eqneg 8649 zeo 9317 fseq1p1m1 10050 seq3val 10414 seqvalcd 10415 hashfzo 10757 hashxp 10761 fsumconst 11417 modfsummod 11421 telfsumo 11429 fprodconst 11583 mulgcd 11971 algcvg 12002 phiprmpw 12176 phisum 12194 strslfv3 12461 ismgmid 12631 uptx 13068 resubmet 13342 lgsval4lem 13706 |
Copyright terms: Public domain | W3C validator |