| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr4id.2 |
|
| eqtr4id.1 |
|
| Ref | Expression |
|---|---|
| eqtr4id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4id.1 |
. 2
| |
| 2 | eqtr4id.2 |
. . 3
| |
| 3 | 2 | eqcomi 2208 |
. 2
|
| 4 | 1, 3 | eqtr2di 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: iftrue 3575 iffalse 3578 difprsn1 3771 dmmptg 5177 relcoi1 5211 funimacnv 5344 dmmptd 5400 dffv3g 5566 dfimafn 5621 fvco2 5642 isoini 5877 iotaexel 5894 fvmpopr2d 6072 oprabco 6293 ixpconstg 6784 unfiexmid 6997 undifdc 7003 sbthlemi4 7044 sbthlemi5 7045 sbthlemi6 7046 supval2ti 7079 exmidfodomrlemim 7291 suplocexprlemex 7817 eqneg 8787 zeo 9460 fseq1p1m1 10198 seq3val 10586 seqvalcd 10587 hashfzo 10948 hashxp 10952 wrdval 10972 wrdnval 10999 fsumconst 11684 modfsummod 11688 telfsumo 11696 fprodconst 11850 mulgcd 12256 algcvg 12289 phiprmpw 12463 phisum 12482 strslfv3 12797 resseqnbasd 12824 pwssnf1o 13048 imasplusg 13058 imasmulr 13059 ismgmid 13127 pws0g 13201 dfrhm2 13834 subrg1 13911 2idlbas 14195 psrbagfi 14353 psrlinv 14364 mplbascoe 14371 mplplusgg 14383 uptx 14664 resubmet 14946 ply1termlem 15132 lgsval4lem 15406 lgsquadlem2 15473 m1lgs 15480 |
| Copyright terms: Public domain | W3C validator |