![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr4id | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr4id.2 |
![]() ![]() ![]() ![]() |
eqtr4id.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr4id |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4id.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqtr4id.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2197 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | eqtr2di 2243 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: iftrue 3563 iffalse 3566 difprsn1 3758 dmmptg 5164 relcoi1 5198 funimacnv 5331 dmmptd 5385 dffv3g 5551 dfimafn 5606 fvco2 5627 isoini 5862 iotaexel 5879 fvmpopr2d 6056 oprabco 6272 ixpconstg 6763 unfiexmid 6976 undifdc 6982 sbthlemi4 7021 sbthlemi5 7022 sbthlemi6 7023 supval2ti 7056 exmidfodomrlemim 7263 suplocexprlemex 7784 eqneg 8753 zeo 9425 fseq1p1m1 10163 seq3val 10534 seqvalcd 10535 hashfzo 10896 hashxp 10900 wrdval 10920 wrdnval 10947 fsumconst 11600 modfsummod 11604 telfsumo 11612 fprodconst 11766 mulgcd 12156 algcvg 12189 phiprmpw 12363 phisum 12381 strslfv3 12667 resseqnbasd 12694 imasplusg 12894 imasmulr 12895 ismgmid 12963 dfrhm2 13653 subrg1 13730 2idlbas 14014 uptx 14453 resubmet 14735 ply1termlem 14921 lgsval4lem 15168 lgsquadlem2 15235 m1lgs 15242 |
Copyright terms: Public domain | W3C validator |