| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr4id.2 |
|
| eqtr4id.1 |
|
| Ref | Expression |
|---|---|
| eqtr4id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4id.1 |
. 2
| |
| 2 | eqtr4id.2 |
. . 3
| |
| 3 | 2 | eqcomi 2233 |
. 2
|
| 4 | 1, 3 | eqtr2di 2279 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: iftrue 3607 iffalse 3610 difprsn1 3806 dmmptg 5225 relcoi1 5259 funimacnv 5396 dmmptd 5453 dffv3g 5622 dfimafn 5681 fvco2 5702 isoini 5941 iotaexel 5958 fvmpopr2d 6140 oprabco 6361 ixpconstg 6852 unfiexmid 7076 undifdc 7082 sbthlemi4 7123 sbthlemi5 7124 sbthlemi6 7125 supval2ti 7158 exmidfodomrlemim 7375 suplocexprlemex 7905 eqneg 8875 zeo 9548 fseq1p1m1 10286 seq3val 10677 seqvalcd 10678 hashfzo 11039 hashxp 11043 wrdval 11069 wrdnval 11097 swrdccat3blem 11266 fsumconst 11960 modfsummod 11964 telfsumo 11972 fprodconst 12126 mulgcd 12532 algcvg 12565 phiprmpw 12739 phisum 12758 strslfv3 13073 resseqnbasd 13101 pwssnf1o 13326 imasplusg 13336 imasmulr 13337 ismgmid 13405 pws0g 13479 dfrhm2 14112 subrg1 14189 2idlbas 14473 psrbagfi 14631 psrlinv 14642 mplbascoe 14649 mplplusgg 14661 uptx 14942 resubmet 15224 ply1termlem 15410 lgsval4lem 15684 lgsquadlem2 15751 m1lgs 15758 uspgrf1oedg 15968 |
| Copyright terms: Public domain | W3C validator |