| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr4id.2 |
|
| eqtr4id.1 |
|
| Ref | Expression |
|---|---|
| eqtr4id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4id.1 |
. 2
| |
| 2 | eqtr4id.2 |
. . 3
| |
| 3 | 2 | eqcomi 2208 |
. 2
|
| 4 | 1, 3 | eqtr2di 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: iftrue 3575 iffalse 3578 difprsn1 3771 dmmptg 5179 relcoi1 5213 funimacnv 5349 dmmptd 5405 dffv3g 5571 dfimafn 5626 fvco2 5647 isoini 5886 iotaexel 5903 fvmpopr2d 6081 oprabco 6302 ixpconstg 6793 unfiexmid 7014 undifdc 7020 sbthlemi4 7061 sbthlemi5 7062 sbthlemi6 7063 supval2ti 7096 exmidfodomrlemim 7308 suplocexprlemex 7834 eqneg 8804 zeo 9477 fseq1p1m1 10215 seq3val 10603 seqvalcd 10604 hashfzo 10965 hashxp 10969 wrdval 10995 wrdnval 11022 fsumconst 11736 modfsummod 11740 telfsumo 11748 fprodconst 11902 mulgcd 12308 algcvg 12341 phiprmpw 12515 phisum 12534 strslfv3 12849 resseqnbasd 12876 pwssnf1o 13101 imasplusg 13111 imasmulr 13112 ismgmid 13180 pws0g 13254 dfrhm2 13887 subrg1 13964 2idlbas 14248 psrbagfi 14406 psrlinv 14417 mplbascoe 14424 mplplusgg 14436 uptx 14717 resubmet 14999 ply1termlem 15185 lgsval4lem 15459 lgsquadlem2 15526 m1lgs 15533 |
| Copyright terms: Public domain | W3C validator |