Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr4id | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr4id.2 | |
eqtr4id.1 |
Ref | Expression |
---|---|
eqtr4id |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4id.1 | . 2 | |
2 | eqtr4id.2 | . . 3 | |
3 | 2 | eqcomi 2174 | . 2 |
4 | 1, 3 | eqtr2di 2220 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: iftrue 3530 iffalse 3533 difprsn1 3717 dmmptg 5106 relcoi1 5140 funimacnv 5272 dmmptd 5326 dffv3g 5490 dfimafn 5543 fvco2 5563 isoini 5794 oprabco 6193 ixpconstg 6681 unfiexmid 6891 undifdc 6897 sbthlemi4 6933 sbthlemi5 6934 sbthlemi6 6935 supval2ti 6968 exmidfodomrlemim 7165 suplocexprlemex 7671 eqneg 8636 zeo 9304 fseq1p1m1 10037 seq3val 10401 seqvalcd 10402 hashfzo 10744 hashxp 10748 fsumconst 11404 modfsummod 11408 telfsumo 11416 fprodconst 11570 mulgcd 11958 algcvg 11989 phiprmpw 12163 phisum 12181 strslfv3 12448 ismgmid 12618 uptx 13027 resubmet 13301 lgsval4lem 13665 |
Copyright terms: Public domain | W3C validator |