ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsnss Unicode version

Theorem difprsnss 3756
Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difprsnss  |-  ( { A ,  B }  \  { A } ) 
C_  { B }

Proof of Theorem difprsnss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . 5  |-  x  e. 
_V
21elpr 3639 . . . 4  |-  ( x  e.  { A ,  B }  <->  ( x  =  A  \/  x  =  B ) )
3 velsn 3635 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
43notbii 669 . . . 4  |-  ( -.  x  e.  { A } 
<->  -.  x  =  A )
5 biorf 745 . . . . 5  |-  ( -.  x  =  A  -> 
( x  =  B  <-> 
( x  =  A  \/  x  =  B ) ) )
65biimparc 299 . . . 4  |-  ( ( ( x  =  A  \/  x  =  B )  /\  -.  x  =  A )  ->  x  =  B )
72, 4, 6syl2anb 291 . . 3  |-  ( ( x  e.  { A ,  B }  /\  -.  x  e.  { A } )  ->  x  =  B )
8 eldif 3162 . . 3  |-  ( x  e.  ( { A ,  B }  \  { A } )  <->  ( x  e.  { A ,  B }  /\  -.  x  e. 
{ A } ) )
9 velsn 3635 . . 3  |-  ( x  e.  { B }  <->  x  =  B )
107, 8, 93imtr4i 201 . 2  |-  ( x  e.  ( { A ,  B }  \  { A } )  ->  x  e.  { B } )
1110ssriv 3183 1  |-  ( { A ,  B }  \  { A } ) 
C_  { B }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164    \ cdif 3150    C_ wss 3153   {csn 3618   {cpr 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625
This theorem is referenced by:  en2other2  7256
  Copyright terms: Public domain W3C validator