Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsnss Unicode version

Theorem difprsnss 3658
 Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difprsnss

Proof of Theorem difprsnss
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 2689 . . . . 5
21elpr 3548 . . . 4
3 velsn 3544 . . . . 5
43notbii 657 . . . 4
5 biorf 733 . . . . 5
65biimparc 297 . . . 4
72, 4, 6syl2anb 289 . . 3
8 eldif 3080 . . 3
9 velsn 3544 . . 3
107, 8, 93imtr4i 200 . 2
1110ssriv 3101 1
 Colors of variables: wff set class Syntax hints:   wn 3   wa 103   wo 697   wceq 1331   wcel 1480   cdif 3068   wss 3071  csn 3527  cpr 3528 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534 This theorem is referenced by:  en2other2  7057
 Copyright terms: Public domain W3C validator