ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsnss Unicode version

Theorem difprsnss 3770
Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difprsnss  |-  ( { A ,  B }  \  { A } ) 
C_  { B }

Proof of Theorem difprsnss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2774 . . . . 5  |-  x  e. 
_V
21elpr 3653 . . . 4  |-  ( x  e.  { A ,  B }  <->  ( x  =  A  \/  x  =  B ) )
3 velsn 3649 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
43notbii 669 . . . 4  |-  ( -.  x  e.  { A } 
<->  -.  x  =  A )
5 biorf 745 . . . . 5  |-  ( -.  x  =  A  -> 
( x  =  B  <-> 
( x  =  A  \/  x  =  B ) ) )
65biimparc 299 . . . 4  |-  ( ( ( x  =  A  \/  x  =  B )  /\  -.  x  =  A )  ->  x  =  B )
72, 4, 6syl2anb 291 . . 3  |-  ( ( x  e.  { A ,  B }  /\  -.  x  e.  { A } )  ->  x  =  B )
8 eldif 3174 . . 3  |-  ( x  e.  ( { A ,  B }  \  { A } )  <->  ( x  e.  { A ,  B }  /\  -.  x  e. 
{ A } ) )
9 velsn 3649 . . 3  |-  ( x  e.  { B }  <->  x  =  B )
107, 8, 93imtr4i 201 . 2  |-  ( x  e.  ( { A ,  B }  \  { A } )  ->  x  e.  { B } )
1110ssriv 3196 1  |-  ( { A ,  B }  \  { A } ) 
C_  { B }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 709    = wceq 1372    e. wcel 2175    \ cdif 3162    C_ wss 3165   {csn 3632   {cpr 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639
This theorem is referenced by:  en2other2  7303
  Copyright terms: Public domain W3C validator