ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsn1 GIF version

Theorem difprsn1 3627
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
difprsn1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})

Proof of Theorem difprsn1
StepHypRef Expression
1 necom 2367 . 2 (𝐵𝐴𝐴𝐵)
2 disjsn2 3554 . . . 4 (𝐵𝐴 → ({𝐵} ∩ {𝐴}) = ∅)
3 disj3 3383 . . . 4 (({𝐵} ∩ {𝐴}) = ∅ ↔ {𝐵} = ({𝐵} ∖ {𝐴}))
42, 3sylib 121 . . 3 (𝐵𝐴 → {𝐵} = ({𝐵} ∖ {𝐴}))
5 df-pr 3502 . . . . . 6 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
65equncomi 3190 . . . . 5 {𝐴, 𝐵} = ({𝐵} ∪ {𝐴})
76difeq1i 3158 . . . 4 ({𝐴, 𝐵} ∖ {𝐴}) = (({𝐵} ∪ {𝐴}) ∖ {𝐴})
8 difun2 3410 . . . 4 (({𝐵} ∪ {𝐴}) ∖ {𝐴}) = ({𝐵} ∖ {𝐴})
97, 8eqtri 2136 . . 3 ({𝐴, 𝐵} ∖ {𝐴}) = ({𝐵} ∖ {𝐴})
104, 9syl6reqr 2167 . 2 (𝐵𝐴 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
111, 10sylbir 134 1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314  wne 2283  cdif 3036  cun 3037  cin 3038  c0 3331  {csn 3495  {cpr 3496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rab 2400  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-sn 3501  df-pr 3502
This theorem is referenced by:  difprsn2  3628
  Copyright terms: Public domain W3C validator