| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difprsn1 | GIF version | ||
| Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| Ref | Expression |
|---|---|
| difprsn1 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necom 2464 | . 2 ⊢ (𝐵 ≠ 𝐴 ↔ 𝐴 ≠ 𝐵) | |
| 2 | df-pr 3653 | . . . . . 6 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 2 | equncomi 3330 | . . . . 5 ⊢ {𝐴, 𝐵} = ({𝐵} ∪ {𝐴}) |
| 4 | 3 | difeq1i 3298 | . . . 4 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) = (({𝐵} ∪ {𝐴}) ∖ {𝐴}) |
| 5 | difun2 3551 | . . . 4 ⊢ (({𝐵} ∪ {𝐴}) ∖ {𝐴}) = ({𝐵} ∖ {𝐴}) | |
| 6 | 4, 5 | eqtri 2230 | . . 3 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) = ({𝐵} ∖ {𝐴}) |
| 7 | disjsn2 3709 | . . . 4 ⊢ (𝐵 ≠ 𝐴 → ({𝐵} ∩ {𝐴}) = ∅) | |
| 8 | disj3 3524 | . . . 4 ⊢ (({𝐵} ∩ {𝐴}) = ∅ ↔ {𝐵} = ({𝐵} ∖ {𝐴})) | |
| 9 | 7, 8 | sylib 122 | . . 3 ⊢ (𝐵 ≠ 𝐴 → {𝐵} = ({𝐵} ∖ {𝐴})) |
| 10 | 6, 9 | eqtr4id 2261 | . 2 ⊢ (𝐵 ≠ 𝐴 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
| 11 | 1, 10 | sylbir 135 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ≠ wne 2380 ∖ cdif 3174 ∪ cun 3175 ∩ cin 3176 ∅c0 3471 {csn 3646 {cpr 3647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rab 2497 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-sn 3652 df-pr 3653 |
| This theorem is referenced by: difprsn2 3787 |
| Copyright terms: Public domain | W3C validator |