ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsn1 GIF version

Theorem difprsn1 3786
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
difprsn1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})

Proof of Theorem difprsn1
StepHypRef Expression
1 necom 2464 . 2 (𝐵𝐴𝐴𝐵)
2 df-pr 3653 . . . . . 6 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
32equncomi 3330 . . . . 5 {𝐴, 𝐵} = ({𝐵} ∪ {𝐴})
43difeq1i 3298 . . . 4 ({𝐴, 𝐵} ∖ {𝐴}) = (({𝐵} ∪ {𝐴}) ∖ {𝐴})
5 difun2 3551 . . . 4 (({𝐵} ∪ {𝐴}) ∖ {𝐴}) = ({𝐵} ∖ {𝐴})
64, 5eqtri 2230 . . 3 ({𝐴, 𝐵} ∖ {𝐴}) = ({𝐵} ∖ {𝐴})
7 disjsn2 3709 . . . 4 (𝐵𝐴 → ({𝐵} ∩ {𝐴}) = ∅)
8 disj3 3524 . . . 4 (({𝐵} ∩ {𝐴}) = ∅ ↔ {𝐵} = ({𝐵} ∖ {𝐴}))
97, 8sylib 122 . . 3 (𝐵𝐴 → {𝐵} = ({𝐵} ∖ {𝐴}))
106, 9eqtr4id 2261 . 2 (𝐵𝐴 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
111, 10sylbir 135 1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wne 2380  cdif 3174  cun 3175  cin 3176  c0 3471  {csn 3646  {cpr 3647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rab 2497  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-sn 3652  df-pr 3653
This theorem is referenced by:  difprsn2  3787
  Copyright terms: Public domain W3C validator