ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsn1 GIF version

Theorem difprsn1 3774
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
difprsn1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})

Proof of Theorem difprsn1
StepHypRef Expression
1 necom 2461 . 2 (𝐵𝐴𝐴𝐵)
2 df-pr 3641 . . . . . 6 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
32equncomi 3320 . . . . 5 {𝐴, 𝐵} = ({𝐵} ∪ {𝐴})
43difeq1i 3288 . . . 4 ({𝐴, 𝐵} ∖ {𝐴}) = (({𝐵} ∪ {𝐴}) ∖ {𝐴})
5 difun2 3541 . . . 4 (({𝐵} ∪ {𝐴}) ∖ {𝐴}) = ({𝐵} ∖ {𝐴})
64, 5eqtri 2227 . . 3 ({𝐴, 𝐵} ∖ {𝐴}) = ({𝐵} ∖ {𝐴})
7 disjsn2 3697 . . . 4 (𝐵𝐴 → ({𝐵} ∩ {𝐴}) = ∅)
8 disj3 3514 . . . 4 (({𝐵} ∩ {𝐴}) = ∅ ↔ {𝐵} = ({𝐵} ∖ {𝐴}))
97, 8sylib 122 . . 3 (𝐵𝐴 → {𝐵} = ({𝐵} ∖ {𝐴}))
106, 9eqtr4id 2258 . 2 (𝐵𝐴 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
111, 10sylbir 135 1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wne 2377  cdif 3164  cun 3165  cin 3166  c0 3461  {csn 3634  {cpr 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rab 2494  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-sn 3640  df-pr 3641
This theorem is referenced by:  difprsn2  3775
  Copyright terms: Public domain W3C validator