| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difprsn1 | GIF version | ||
| Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| Ref | Expression |
|---|---|
| difprsn1 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necom 2461 | . 2 ⊢ (𝐵 ≠ 𝐴 ↔ 𝐴 ≠ 𝐵) | |
| 2 | df-pr 3641 | . . . . . 6 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 2 | equncomi 3320 | . . . . 5 ⊢ {𝐴, 𝐵} = ({𝐵} ∪ {𝐴}) |
| 4 | 3 | difeq1i 3288 | . . . 4 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) = (({𝐵} ∪ {𝐴}) ∖ {𝐴}) |
| 5 | difun2 3541 | . . . 4 ⊢ (({𝐵} ∪ {𝐴}) ∖ {𝐴}) = ({𝐵} ∖ {𝐴}) | |
| 6 | 4, 5 | eqtri 2227 | . . 3 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) = ({𝐵} ∖ {𝐴}) |
| 7 | disjsn2 3697 | . . . 4 ⊢ (𝐵 ≠ 𝐴 → ({𝐵} ∩ {𝐴}) = ∅) | |
| 8 | disj3 3514 | . . . 4 ⊢ (({𝐵} ∩ {𝐴}) = ∅ ↔ {𝐵} = ({𝐵} ∖ {𝐴})) | |
| 9 | 7, 8 | sylib 122 | . . 3 ⊢ (𝐵 ≠ 𝐴 → {𝐵} = ({𝐵} ∖ {𝐴})) |
| 10 | 6, 9 | eqtr4id 2258 | . 2 ⊢ (𝐵 ≠ 𝐴 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
| 11 | 1, 10 | sylbir 135 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ≠ wne 2377 ∖ cdif 3164 ∪ cun 3165 ∩ cin 3166 ∅c0 3461 {csn 3634 {cpr 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rab 2494 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-sn 3640 df-pr 3641 |
| This theorem is referenced by: difprsn2 3775 |
| Copyright terms: Public domain | W3C validator |