Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difprsn1 | GIF version |
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
Ref | Expression |
---|---|
difprsn1 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necom 2420 | . 2 ⊢ (𝐵 ≠ 𝐴 ↔ 𝐴 ≠ 𝐵) | |
2 | df-pr 3583 | . . . . . 6 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 2 | equncomi 3268 | . . . . 5 ⊢ {𝐴, 𝐵} = ({𝐵} ∪ {𝐴}) |
4 | 3 | difeq1i 3236 | . . . 4 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) = (({𝐵} ∪ {𝐴}) ∖ {𝐴}) |
5 | difun2 3488 | . . . 4 ⊢ (({𝐵} ∪ {𝐴}) ∖ {𝐴}) = ({𝐵} ∖ {𝐴}) | |
6 | 4, 5 | eqtri 2186 | . . 3 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) = ({𝐵} ∖ {𝐴}) |
7 | disjsn2 3639 | . . . 4 ⊢ (𝐵 ≠ 𝐴 → ({𝐵} ∩ {𝐴}) = ∅) | |
8 | disj3 3461 | . . . 4 ⊢ (({𝐵} ∩ {𝐴}) = ∅ ↔ {𝐵} = ({𝐵} ∖ {𝐴})) | |
9 | 7, 8 | sylib 121 | . . 3 ⊢ (𝐵 ≠ 𝐴 → {𝐵} = ({𝐵} ∖ {𝐴})) |
10 | 6, 9 | eqtr4id 2218 | . 2 ⊢ (𝐵 ≠ 𝐴 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
11 | 1, 10 | sylbir 134 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ≠ wne 2336 ∖ cdif 3113 ∪ cun 3114 ∩ cin 3115 ∅c0 3409 {csn 3576 {cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 |
This theorem is referenced by: difprsn2 3713 |
Copyright terms: Public domain | W3C validator |