Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspccva | Unicode version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rspcv.1 |
Ref | Expression |
---|---|
rspccva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcv.1 | . . 3 | |
2 | 1 | rspcv 2826 | . 2 |
3 | 2 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 |
This theorem is referenced by: disjne 3462 seex 4313 fconstfvm 5703 fvixp 6669 ordiso2 7000 eqord1 8381 eqord2 8382 seq3caopr2 10417 bccl 10680 2clim 11242 isummulc2 11367 telfsumo2 11408 fsumparts 11411 isumshft 11431 mertenslem2 11477 mertensabs 11478 dvdsprime 12054 mgmlrid 12610 grprinvlem 12616 cnima 12860 dceqnconst 13938 dcapnconst 13939 |
Copyright terms: Public domain | W3C validator |