ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspccva Unicode version

Theorem rspccva 2876
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
rspcv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspccva  |-  ( ( A. x  e.  B  ph 
/\  A  e.  B
)  ->  ps )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem rspccva
StepHypRef Expression
1 rspcv.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21rspcv 2873 . 2  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) )
32impcom 125 1  |-  ( ( A. x  e.  B  ph 
/\  A  e.  B
)  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774
This theorem is referenced by:  disjne  3514  seex  4382  fconstfvm  5802  caofid0l  6185  caofid0r  6186  caofid1  6187  caofid2  6188  fvixp  6790  ordiso2  7137  eqord1  8556  eqord2  8557  seq3caopr2  10638  seqcaopr2g  10639  bccl  10912  2clim  11612  isummulc2  11737  telfsumo2  11778  fsumparts  11781  isumshft  11801  mertenslem2  11847  mertensabs  11848  dvdsprime  12444  mgmlrid  13211  grpinvalem  13217  grpinvex  13342  issubg2m  13525  issubg4m  13529  nmzbi  13545  cnima  14692  dich0  15124  2lgslem1a  15565  dceqnconst  16003  dcapnconst  16004
  Copyright terms: Public domain W3C validator