ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspccva Unicode version

Theorem rspccva 2863
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
rspcv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspccva  |-  ( ( A. x  e.  B  ph 
/\  A  e.  B
)  ->  ps )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem rspccva
StepHypRef Expression
1 rspcv.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21rspcv 2860 . 2  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) )
32impcom 125 1  |-  ( ( A. x  e.  B  ph 
/\  A  e.  B
)  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762
This theorem is referenced by:  disjne  3500  seex  4366  fconstfvm  5776  fvixp  6757  ordiso2  7094  eqord1  8502  eqord2  8503  seq3caopr2  10564  seqcaopr2g  10565  bccl  10838  2clim  11444  isummulc2  11569  telfsumo2  11610  fsumparts  11613  isumshft  11633  mertenslem2  11679  mertensabs  11680  dvdsprime  12260  mgmlrid  12962  grpinvalem  12968  grpinvex  13082  issubg2m  13259  issubg4m  13263  nmzbi  13279  cnima  14388  dich0  14806  dceqnconst  15550  dcapnconst  15551
  Copyright terms: Public domain W3C validator