ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspccva Unicode version

Theorem rspccva 2883
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
rspcv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspccva  |-  ( ( A. x  e.  B  ph 
/\  A  e.  B
)  ->  ps )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem rspccva
StepHypRef Expression
1 rspcv.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21rspcv 2880 . 2  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) )
32impcom 125 1  |-  ( ( A. x  e.  B  ph 
/\  A  e.  B
)  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778
This theorem is referenced by:  disjne  3522  seex  4400  fconstfvm  5825  caofid0l  6208  caofid0r  6209  caofid1  6210  caofid2  6211  fvixp  6813  ordiso2  7163  eqord1  8591  eqord2  8592  seq3caopr2  10675  seqcaopr2g  10676  bccl  10949  2clim  11727  isummulc2  11852  telfsumo2  11893  fsumparts  11896  isumshft  11916  mertenslem2  11962  mertensabs  11963  dvdsprime  12559  mgmlrid  13326  grpinvalem  13332  grpinvex  13457  issubg2m  13640  issubg4m  13644  nmzbi  13660  cnima  14807  dich0  15239  2lgslem1a  15680  dceqnconst  16201  dcapnconst  16202
  Copyright terms: Public domain W3C validator