Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspccva | Unicode version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rspcv.1 |
Ref | Expression |
---|---|
rspccva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcv.1 | . . 3 | |
2 | 1 | rspcv 2835 | . 2 |
3 | 2 | impcom 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 |
This theorem is referenced by: disjne 3474 seex 4329 fconstfvm 5726 fvixp 6693 ordiso2 7024 eqord1 8414 eqord2 8415 seq3caopr2 10450 bccl 10713 2clim 11275 isummulc2 11400 telfsumo2 11441 fsumparts 11444 isumshft 11464 mertenslem2 11510 mertensabs 11511 dvdsprime 12087 mgmlrid 12662 grprinvlem 12668 grpinvex 12747 cnima 13271 dceqnconst 14348 dcapnconst 14349 |
Copyright terms: Public domain | W3C validator |