ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspccva Unicode version

Theorem rspccva 2906
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
rspcv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspccva  |-  ( ( A. x  e.  B  ph 
/\  A  e.  B
)  ->  ps )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem rspccva
StepHypRef Expression
1 rspcv.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21rspcv 2903 . 2  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) )
32impcom 125 1  |-  ( ( A. x  e.  B  ph 
/\  A  e.  B
)  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801
This theorem is referenced by:  disjne  3545  seex  4426  fconstfvm  5857  caofid0l  6245  caofid0r  6246  caofid1  6247  caofid2  6248  fvixp  6850  ordiso2  7202  eqord1  8630  eqord2  8631  seq3caopr2  10715  seqcaopr2g  10716  bccl  10989  2clim  11812  isummulc2  11937  telfsumo2  11978  fsumparts  11981  isumshft  12001  mertenslem2  12047  mertensabs  12048  dvdsprime  12644  mgmlrid  13412  grpinvalem  13418  grpinvex  13543  issubg2m  13726  issubg4m  13730  nmzbi  13746  cnima  14894  dich0  15326  2lgslem1a  15767  dceqnconst  16428  dcapnconst  16429
  Copyright terms: Public domain W3C validator