ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdisj1 Unicode version

Theorem xpdisj1 5012
Description: Cross products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
xpdisj1  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  X.  C )  i^i  ( B  X.  D ) )  =  (/) )

Proof of Theorem xpdisj1
StepHypRef Expression
1 inxp 4722 . 2  |-  ( ( A  X.  C )  i^i  ( B  X.  D ) )  =  ( ( A  i^i  B )  X.  ( C  i^i  D ) )
2 xpeq1 4602 . . 3  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  i^i  B )  X.  ( C  i^i  D ) )  =  (
(/)  X.  ( C  i^i  D ) ) )
3 0xp 4668 . . 3  |-  ( (/)  X.  ( C  i^i  D
) )  =  (/)
42, 3eqtrdi 2206 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  i^i  B )  X.  ( C  i^i  D ) )  =  (/) )
51, 4syl5eq 2202 1  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  X.  C )  i^i  ( B  X.  D ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    i^i cin 3101   (/)c0 3395    X. cxp 4586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-opab 4028  df-xp 4594  df-rel 4595
This theorem is referenced by:  djudisj  5015  xp01disjl  6383  xpfi  6876  djuinr  7009
  Copyright terms: Public domain W3C validator