| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djudisj | GIF version | ||
| Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| Ref | Expression |
|---|---|
| djudisj | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djussxp 4811 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V) | |
| 2 | incom 3355 | . . 3 ⊢ ((𝐴 × V) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) | |
| 3 | djussxp 4811 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V) | |
| 4 | incom 3355 | . . . . 5 ⊢ ((𝐵 × V) ∩ (𝐴 × V)) = ((𝐴 × V) ∩ (𝐵 × V)) | |
| 5 | xpdisj1 5094 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × V) ∩ (𝐵 × V)) = ∅) | |
| 6 | 4, 5 | eqtrid 2241 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐵 × V) ∩ (𝐴 × V)) = ∅) |
| 7 | ssdisj 3507 | . . . 4 ⊢ ((∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V) ∧ ((𝐵 × V) ∩ (𝐴 × V)) = ∅) → (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅) | |
| 8 | 3, 6, 7 | sylancr 414 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅) |
| 9 | 2, 8 | eqtrid 2241 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × V) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) |
| 10 | ssdisj 3507 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V) ∧ ((𝐴 × V) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) | |
| 11 | 1, 9, 10 | sylancr 414 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 ∅c0 3450 {csn 3622 ∪ ciun 3916 × cxp 4661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-iun 3918 df-opab 4095 df-xp 4669 df-rel 4670 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |