![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djudisj | GIF version |
Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
Ref | Expression |
---|---|
djudisj | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djussxp 4644 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V) | |
2 | incom 3234 | . . 3 ⊢ ((𝐴 × V) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) | |
3 | djussxp 4644 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V) | |
4 | incom 3234 | . . . . 5 ⊢ ((𝐵 × V) ∩ (𝐴 × V)) = ((𝐴 × V) ∩ (𝐵 × V)) | |
5 | xpdisj1 4921 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × V) ∩ (𝐵 × V)) = ∅) | |
6 | 4, 5 | syl5eq 2159 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐵 × V) ∩ (𝐴 × V)) = ∅) |
7 | ssdisj 3385 | . . . 4 ⊢ ((∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V) ∧ ((𝐵 × V) ∩ (𝐴 × V)) = ∅) → (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅) | |
8 | 3, 6, 7 | sylancr 408 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅) |
9 | 2, 8 | syl5eq 2159 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × V) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) |
10 | ssdisj 3385 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V) ∧ ((𝐴 × V) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) | |
11 | 1, 9, 10 | sylancr 408 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1314 Vcvv 2657 ∩ cin 3036 ⊆ wss 3037 ∅c0 3329 {csn 3493 ∪ ciun 3779 × cxp 4497 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-iun 3781 df-opab 3950 df-xp 4505 df-rel 4506 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |