ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmcnvcnv Unicode version

Theorem dmcnvcnv 4887
Description: The domain of the double converse of a class (which doesn't have to be a relation as in dfrel2 5117). (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
dmcnvcnv  |-  dom  `' `' A  =  dom  A

Proof of Theorem dmcnvcnv
StepHypRef Expression
1 dfdm4 4855 . 2  |-  dom  A  =  ran  `' A
2 df-rn 4671 . 2  |-  ran  `' A  =  dom  `' `' A
31, 2eqtr2i 2215 1  |-  dom  `' `' A  =  dom  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364   `'ccnv 4659   dom cdm 4660   ran crn 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-cnv 4668  df-dm 4670  df-rn 4671
This theorem is referenced by:  resdm2  5157  f1cnvcnv  5471
  Copyright terms: Public domain W3C validator