ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmcnvcnv GIF version

Theorem dmcnvcnv 4902
Description: The domain of the double converse of a class (which doesn't have to be a relation as in dfrel2 5133). (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
dmcnvcnv dom 𝐴 = dom 𝐴

Proof of Theorem dmcnvcnv
StepHypRef Expression
1 dfdm4 4870 . 2 dom 𝐴 = ran 𝐴
2 df-rn 4686 . 2 ran 𝐴 = dom 𝐴
31, 2eqtr2i 2227 1 dom 𝐴 = dom 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  ccnv 4674  dom cdm 4675  ran crn 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-cnv 4683  df-dm 4685  df-rn 4686
This theorem is referenced by:  resdm2  5173  f1cnvcnv  5492
  Copyright terms: Public domain W3C validator