ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmcnvcnv GIF version

Theorem dmcnvcnv 4647
Description: The domain of the double converse of a class (which doesn't have to be a relation as in dfrel2 4868). (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
dmcnvcnv dom 𝐴 = dom 𝐴

Proof of Theorem dmcnvcnv
StepHypRef Expression
1 dfdm4 4616 . 2 dom 𝐴 = ran 𝐴
2 df-rn 4439 . 2 ran 𝐴 = dom 𝐴
31, 2eqtr2i 2109 1 dom 𝐴 = dom 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1289  ccnv 4427  dom cdm 4428  ran crn 4429
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-cnv 4436  df-dm 4438  df-rn 4439
This theorem is referenced by:  resdm2  4908  f1cnvcnv  5211
  Copyright terms: Public domain W3C validator