ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnresv Unicode version

Theorem rnresv 5117
Description: The range of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
rnresv  |-  ran  ( A  |`  _V )  =  ran  A

Proof of Theorem rnresv
StepHypRef Expression
1 cnvcnv2 5111 . . 3  |-  `' `' A  =  ( A  |` 
_V )
21rneqi 4884 . 2  |-  ran  `' `' A  =  ran  ( A  |`  _V )
3 rncnvcnv 4881 . 2  |-  ran  `' `' A  =  ran  A
42, 3eqtr3i 2216 1  |-  ran  ( A  |`  _V )  =  ran  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364   _Vcvv 2760   `'ccnv 4654   ran crn 4656    |` cres 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4661  df-rel 4662  df-cnv 4663  df-dm 4665  df-rn 4666  df-res 4667
This theorem is referenced by:  dfrn4  5118  casefun  7134
  Copyright terms: Public domain W3C validator