ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel3 Unicode version

Theorem dfrel3 4901
Description: Alternate definition of relation. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
dfrel3  |-  ( Rel 
R  <->  ( R  |`  _V )  =  R
)

Proof of Theorem dfrel3
StepHypRef Expression
1 dfrel2 4894 . 2  |-  ( Rel 
R  <->  `' `' R  =  R
)
2 cnvcnv2 4897 . . 3  |-  `' `' R  =  ( R  |` 
_V )
32eqeq1i 2096 . 2  |-  ( `' `' R  =  R  <->  ( R  |`  _V )  =  R )
41, 3bitri 183 1  |-  ( Rel 
R  <->  ( R  |`  _V )  =  R
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1290   _Vcvv 2620   `'ccnv 4451    |` cres 4454   Rel wrel 4457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-opab 3906  df-xp 4458  df-rel 4459  df-cnv 4460  df-res 4464
This theorem is referenced by:  cocnvcnv2  4955  f1ovi  5305
  Copyright terms: Public domain W3C validator