ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmresv GIF version

Theorem dmresv 5140
Description: The domain of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
dmresv dom (𝐴 ↾ V) = dom 𝐴

Proof of Theorem dmresv
StepHypRef Expression
1 dmres 4979 . 2 dom (𝐴 ↾ V) = (V ∩ dom 𝐴)
2 incom 3364 . 2 (V ∩ dom 𝐴) = (dom 𝐴 ∩ V)
3 inv1 3496 . 2 (dom 𝐴 ∩ V) = dom 𝐴
41, 2, 33eqtri 2229 1 dom (𝐴 ↾ V) = dom 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1372  Vcvv 2771  cin 3164  dom cdm 4674  cres 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-dm 4684  df-res 4686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator