| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsnopg | Unicode version | ||
| Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmsnopg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. . . . . 6
| |
| 2 | vex 2766 |
. . . . . 6
| |
| 3 | 1, 2 | opth1 4270 |
. . . . 5
|
| 4 | 3 | exlimiv 1612 |
. . . 4
|
| 5 | opeq1 3809 |
. . . . 5
| |
| 6 | opeq2 3810 |
. . . . . . 7
| |
| 7 | 6 | eqeq1d 2205 |
. . . . . 6
|
| 8 | 7 | spcegv 2852 |
. . . . 5
|
| 9 | 5, 8 | syl5 32 |
. . . 4
|
| 10 | 4, 9 | impbid2 143 |
. . 3
|
| 11 | 1 | eldm2 4865 |
. . . 4
|
| 12 | 1, 2 | opex 4263 |
. . . . . 6
|
| 13 | 12 | elsn 3639 |
. . . . 5
|
| 14 | 13 | exbii 1619 |
. . . 4
|
| 15 | 11, 14 | bitri 184 |
. . 3
|
| 16 | velsn 3640 |
. . 3
| |
| 17 | 10, 15, 16 | 3bitr4g 223 |
. 2
|
| 18 | 17 | eqrdv 2194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-dm 4674 |
| This theorem is referenced by: dmpropg 5143 dmsnop 5144 rnsnopg 5149 elxp4 5158 fnsng 5306 funprg 5309 funtpg 5310 fntpg 5315 ennnfonelemhdmp1 12651 ennnfonelemkh 12654 setsvala 12734 setsresg 12741 setscom 12743 setsslid 12754 strle1g 12809 |
| Copyright terms: Public domain | W3C validator |