Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmsnopg | Unicode version |
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmsnopg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2712 | . . . . . 6 | |
2 | vex 2712 | . . . . . 6 | |
3 | 1, 2 | opth1 4191 | . . . . 5 |
4 | 3 | exlimiv 1575 | . . . 4 |
5 | opeq1 3737 | . . . . 5 | |
6 | opeq2 3738 | . . . . . . 7 | |
7 | 6 | eqeq1d 2163 | . . . . . 6 |
8 | 7 | spcegv 2797 | . . . . 5 |
9 | 5, 8 | syl5 32 | . . . 4 |
10 | 4, 9 | impbid2 142 | . . 3 |
11 | 1 | eldm2 4777 | . . . 4 |
12 | 1, 2 | opex 4184 | . . . . . 6 |
13 | 12 | elsn 3572 | . . . . 5 |
14 | 13 | exbii 1582 | . . . 4 |
15 | 11, 14 | bitri 183 | . . 3 |
16 | velsn 3573 | . . 3 | |
17 | 10, 15, 16 | 3bitr4g 222 | . 2 |
18 | 17 | eqrdv 2152 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1332 wex 1469 wcel 2125 csn 3556 cop 3559 cdm 4579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-dm 4589 |
This theorem is referenced by: dmpropg 5051 dmsnop 5052 rnsnopg 5057 elxp4 5066 fnsng 5210 funprg 5213 funtpg 5214 fntpg 5219 ennnfonelemhdmp1 12097 ennnfonelemkh 12100 setsvala 12168 setsresg 12175 setscom 12177 setsslid 12187 strle1g 12227 |
Copyright terms: Public domain | W3C validator |