| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsnopg | Unicode version | ||
| Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmsnopg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 |
. . . . . 6
| |
| 2 | vex 2775 |
. . . . . 6
| |
| 3 | 1, 2 | opth1 4281 |
. . . . 5
|
| 4 | 3 | exlimiv 1621 |
. . . 4
|
| 5 | opeq1 3819 |
. . . . 5
| |
| 6 | opeq2 3820 |
. . . . . . 7
| |
| 7 | 6 | eqeq1d 2214 |
. . . . . 6
|
| 8 | 7 | spcegv 2861 |
. . . . 5
|
| 9 | 5, 8 | syl5 32 |
. . . 4
|
| 10 | 4, 9 | impbid2 143 |
. . 3
|
| 11 | 1 | eldm2 4877 |
. . . 4
|
| 12 | 1, 2 | opex 4274 |
. . . . . 6
|
| 13 | 12 | elsn 3649 |
. . . . 5
|
| 14 | 13 | exbii 1628 |
. . . 4
|
| 15 | 11, 14 | bitri 184 |
. . 3
|
| 16 | velsn 3650 |
. . 3
| |
| 17 | 10, 15, 16 | 3bitr4g 223 |
. 2
|
| 18 | 17 | eqrdv 2203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-dm 4686 |
| This theorem is referenced by: dmpropg 5156 dmsnop 5157 rnsnopg 5162 elxp4 5171 fnsng 5322 funprg 5325 funtpg 5326 fntpg 5331 s1dmg 11082 ennnfonelemhdmp1 12813 ennnfonelemkh 12816 setsvala 12896 setsresg 12903 setscom 12905 setsslid 12916 strle1g 12971 |
| Copyright terms: Public domain | W3C validator |