ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnopg Unicode version

Theorem dmsnopg 5082
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnopg  |-  ( B  e.  V  ->  dom  {
<. A ,  B >. }  =  { A }
)

Proof of Theorem dmsnopg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . . 6  |-  x  e. 
_V
2 vex 2733 . . . . . 6  |-  y  e. 
_V
31, 2opth1 4221 . . . . 5  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  x  =  A )
43exlimiv 1591 . . . 4  |-  ( E. y <. x ,  y
>.  =  <. A ,  B >.  ->  x  =  A )
5 opeq1 3765 . . . . 5  |-  ( x  =  A  ->  <. x ,  B >.  =  <. A ,  B >. )
6 opeq2 3766 . . . . . . 7  |-  ( y  =  B  ->  <. x ,  y >.  =  <. x ,  B >. )
76eqeq1d 2179 . . . . . 6  |-  ( y  =  B  ->  ( <. x ,  y >.  =  <. A ,  B >.  <->  <. x ,  B >.  = 
<. A ,  B >. ) )
87spcegv 2818 . . . . 5  |-  ( B  e.  V  ->  ( <. x ,  B >.  = 
<. A ,  B >.  ->  E. y <. x ,  y
>.  =  <. A ,  B >. ) )
95, 8syl5 32 . . . 4  |-  ( B  e.  V  ->  (
x  =  A  ->  E. y <. x ,  y
>.  =  <. A ,  B >. ) )
104, 9impbid2 142 . . 3  |-  ( B  e.  V  ->  ( E. y <. x ,  y
>.  =  <. A ,  B >. 
<->  x  =  A ) )
111eldm2 4809 . . . 4  |-  ( x  e.  dom  { <. A ,  B >. }  <->  E. y <. x ,  y >.  e.  { <. A ,  B >. } )
121, 2opex 4214 . . . . . 6  |-  <. x ,  y >.  e.  _V
1312elsn 3599 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. A ,  B >. }  <->  <. x ,  y
>.  =  <. A ,  B >. )
1413exbii 1598 . . . 4  |-  ( E. y <. x ,  y
>.  e.  { <. A ,  B >. }  <->  E. y <. x ,  y >.  =  <. A ,  B >. )
1511, 14bitri 183 . . 3  |-  ( x  e.  dom  { <. A ,  B >. }  <->  E. y <. x ,  y >.  =  <. A ,  B >. )
16 velsn 3600 . . 3  |-  ( x  e.  { A }  <->  x  =  A )
1710, 15, 163bitr4g 222 . 2  |-  ( B  e.  V  ->  (
x  e.  dom  { <. A ,  B >. }  <-> 
x  e.  { A } ) )
1817eqrdv 2168 1  |-  ( B  e.  V  ->  dom  {
<. A ,  B >. }  =  { A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   E.wex 1485    e. wcel 2141   {csn 3583   <.cop 3586   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-dm 4621
This theorem is referenced by:  dmpropg  5083  dmsnop  5084  rnsnopg  5089  elxp4  5098  fnsng  5245  funprg  5248  funtpg  5249  fntpg  5254  ennnfonelemhdmp1  12364  ennnfonelemkh  12367  setsvala  12447  setsresg  12454  setscom  12456  setsslid  12466  strle1g  12508
  Copyright terms: Public domain W3C validator