| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dmsnopg | Unicode version | ||
| Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| dmsnopg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2766 | 
. . . . . 6
 | |
| 2 | vex 2766 | 
. . . . . 6
 | |
| 3 | 1, 2 | opth1 4269 | 
. . . . 5
 | 
| 4 | 3 | exlimiv 1612 | 
. . . 4
 | 
| 5 | opeq1 3808 | 
. . . . 5
 | |
| 6 | opeq2 3809 | 
. . . . . . 7
 | |
| 7 | 6 | eqeq1d 2205 | 
. . . . . 6
 | 
| 8 | 7 | spcegv 2852 | 
. . . . 5
 | 
| 9 | 5, 8 | syl5 32 | 
. . . 4
 | 
| 10 | 4, 9 | impbid2 143 | 
. . 3
 | 
| 11 | 1 | eldm2 4864 | 
. . . 4
 | 
| 12 | 1, 2 | opex 4262 | 
. . . . . 6
 | 
| 13 | 12 | elsn 3638 | 
. . . . 5
 | 
| 14 | 13 | exbii 1619 | 
. . . 4
 | 
| 15 | 11, 14 | bitri 184 | 
. . 3
 | 
| 16 | velsn 3639 | 
. . 3
 | |
| 17 | 10, 15, 16 | 3bitr4g 223 | 
. 2
 | 
| 18 | 17 | eqrdv 2194 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-dm 4673 | 
| This theorem is referenced by: dmpropg 5142 dmsnop 5143 rnsnopg 5148 elxp4 5157 fnsng 5305 funprg 5308 funtpg 5309 fntpg 5314 ennnfonelemhdmp1 12626 ennnfonelemkh 12629 setsvala 12709 setsresg 12716 setscom 12718 setsslid 12729 strle1g 12784 | 
| Copyright terms: Public domain | W3C validator |