| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsnopg | Unicode version | ||
| Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmsnopg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 |
. . . . . 6
| |
| 2 | vex 2779 |
. . . . . 6
| |
| 3 | 1, 2 | opth1 4298 |
. . . . 5
|
| 4 | 3 | exlimiv 1622 |
. . . 4
|
| 5 | opeq1 3833 |
. . . . 5
| |
| 6 | opeq2 3834 |
. . . . . . 7
| |
| 7 | 6 | eqeq1d 2216 |
. . . . . 6
|
| 8 | 7 | spcegv 2868 |
. . . . 5
|
| 9 | 5, 8 | syl5 32 |
. . . 4
|
| 10 | 4, 9 | impbid2 143 |
. . 3
|
| 11 | 1 | eldm2 4895 |
. . . 4
|
| 12 | 1, 2 | opex 4291 |
. . . . . 6
|
| 13 | 12 | elsn 3659 |
. . . . 5
|
| 14 | 13 | exbii 1629 |
. . . 4
|
| 15 | 11, 14 | bitri 184 |
. . 3
|
| 16 | velsn 3660 |
. . 3
| |
| 17 | 10, 15, 16 | 3bitr4g 223 |
. 2
|
| 18 | 17 | eqrdv 2205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-dm 4703 |
| This theorem is referenced by: dmpropg 5174 dmsnop 5175 rnsnopg 5180 elxp4 5189 fnsng 5340 funprg 5343 funtpg 5344 fntpg 5349 s1dmg 11117 ennnfonelemhdmp1 12895 ennnfonelemkh 12898 setsvala 12978 setsresg 12985 setscom 12987 setsslid 12998 strle1g 13053 |
| Copyright terms: Public domain | W3C validator |