ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnopg Unicode version

Theorem dmsnopg 5141
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnopg  |-  ( B  e.  V  ->  dom  {
<. A ,  B >. }  =  { A }
)

Proof of Theorem dmsnopg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . . 6  |-  x  e. 
_V
2 vex 2766 . . . . . 6  |-  y  e. 
_V
31, 2opth1 4269 . . . . 5  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  x  =  A )
43exlimiv 1612 . . . 4  |-  ( E. y <. x ,  y
>.  =  <. A ,  B >.  ->  x  =  A )
5 opeq1 3808 . . . . 5  |-  ( x  =  A  ->  <. x ,  B >.  =  <. A ,  B >. )
6 opeq2 3809 . . . . . . 7  |-  ( y  =  B  ->  <. x ,  y >.  =  <. x ,  B >. )
76eqeq1d 2205 . . . . . 6  |-  ( y  =  B  ->  ( <. x ,  y >.  =  <. A ,  B >.  <->  <. x ,  B >.  = 
<. A ,  B >. ) )
87spcegv 2852 . . . . 5  |-  ( B  e.  V  ->  ( <. x ,  B >.  = 
<. A ,  B >.  ->  E. y <. x ,  y
>.  =  <. A ,  B >. ) )
95, 8syl5 32 . . . 4  |-  ( B  e.  V  ->  (
x  =  A  ->  E. y <. x ,  y
>.  =  <. A ,  B >. ) )
104, 9impbid2 143 . . 3  |-  ( B  e.  V  ->  ( E. y <. x ,  y
>.  =  <. A ,  B >. 
<->  x  =  A ) )
111eldm2 4864 . . . 4  |-  ( x  e.  dom  { <. A ,  B >. }  <->  E. y <. x ,  y >.  e.  { <. A ,  B >. } )
121, 2opex 4262 . . . . . 6  |-  <. x ,  y >.  e.  _V
1312elsn 3638 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. A ,  B >. }  <->  <. x ,  y
>.  =  <. A ,  B >. )
1413exbii 1619 . . . 4  |-  ( E. y <. x ,  y
>.  e.  { <. A ,  B >. }  <->  E. y <. x ,  y >.  =  <. A ,  B >. )
1511, 14bitri 184 . . 3  |-  ( x  e.  dom  { <. A ,  B >. }  <->  E. y <. x ,  y >.  =  <. A ,  B >. )
16 velsn 3639 . . 3  |-  ( x  e.  { A }  <->  x  =  A )
1710, 15, 163bitr4g 223 . 2  |-  ( B  e.  V  ->  (
x  e.  dom  { <. A ,  B >. }  <-> 
x  e.  { A } ) )
1817eqrdv 2194 1  |-  ( B  e.  V  ->  dom  {
<. A ,  B >. }  =  { A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1506    e. wcel 2167   {csn 3622   <.cop 3625   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-dm 4673
This theorem is referenced by:  dmpropg  5142  dmsnop  5143  rnsnopg  5148  elxp4  5157  fnsng  5305  funprg  5308  funtpg  5309  fntpg  5314  ennnfonelemhdmp1  12626  ennnfonelemkh  12629  setsvala  12709  setsresg  12716  setscom  12718  setsslid  12729  strle1g  12784
  Copyright terms: Public domain W3C validator