| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsnopg | Unicode version | ||
| Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmsnopg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 |
. . . . . 6
| |
| 2 | vex 2802 |
. . . . . 6
| |
| 3 | 1, 2 | opth1 4322 |
. . . . 5
|
| 4 | 3 | exlimiv 1644 |
. . . 4
|
| 5 | opeq1 3857 |
. . . . 5
| |
| 6 | opeq2 3858 |
. . . . . . 7
| |
| 7 | 6 | eqeq1d 2238 |
. . . . . 6
|
| 8 | 7 | spcegv 2891 |
. . . . 5
|
| 9 | 5, 8 | syl5 32 |
. . . 4
|
| 10 | 4, 9 | impbid2 143 |
. . 3
|
| 11 | 1 | eldm2 4921 |
. . . 4
|
| 12 | 1, 2 | opex 4315 |
. . . . . 6
|
| 13 | 12 | elsn 3682 |
. . . . 5
|
| 14 | 13 | exbii 1651 |
. . . 4
|
| 15 | 11, 14 | bitri 184 |
. . 3
|
| 16 | velsn 3683 |
. . 3
| |
| 17 | 10, 15, 16 | 3bitr4g 223 |
. 2
|
| 18 | 17 | eqrdv 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-dm 4729 |
| This theorem is referenced by: dmpropg 5201 dmsnop 5202 rnsnopg 5207 elxp4 5216 fnsng 5368 funprg 5371 funtpg 5372 fntpg 5377 s1dmg 11158 ennnfonelemhdmp1 12980 ennnfonelemkh 12983 setsvala 13063 setsresg 13070 setscom 13072 setsslid 13083 bassetsnn 13089 strle1g 13139 |
| Copyright terms: Public domain | W3C validator |