ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1sta Unicode version

Theorem op1sta 5102
Description: Extract the first member of an ordered pair. (See op2nda 5105 to extract the second member and op1stb 4472 for an alternate version.) (Contributed by Raph Levien, 4-Dec-2003.)
Hypotheses
Ref Expression
cnvsn.1  |-  A  e. 
_V
cnvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
op1sta  |-  U. dom  {
<. A ,  B >. }  =  A

Proof of Theorem op1sta
StepHypRef Expression
1 cnvsn.2 . . . 4  |-  B  e. 
_V
21dmsnop 5094 . . 3  |-  dom  { <. A ,  B >. }  =  { A }
32unieqi 3815 . 2  |-  U. dom  {
<. A ,  B >. }  =  U. { A }
4 cnvsn.1 . . 3  |-  A  e. 
_V
54unisn 3821 . 2  |-  U. { A }  =  A
63, 5eqtri 2196 1  |-  U. dom  {
<. A ,  B >. }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2146   _Vcvv 2735   {csn 3589   <.cop 3592   U.cuni 3805   dom cdm 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-dm 4630
This theorem is referenced by:  op1st  6137  fo1st  6148  f1stres  6150  xpassen  6820  xpdom2  6821
  Copyright terms: Public domain W3C validator