ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1sta Unicode version

Theorem op1sta 5164
Description: Extract the first member of an ordered pair. (See op2nda 5167 to extract the second member and op1stb 4525 for an alternate version.) (Contributed by Raph Levien, 4-Dec-2003.)
Hypotheses
Ref Expression
cnvsn.1  |-  A  e. 
_V
cnvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
op1sta  |-  U. dom  {
<. A ,  B >. }  =  A

Proof of Theorem op1sta
StepHypRef Expression
1 cnvsn.2 . . . 4  |-  B  e. 
_V
21dmsnop 5156 . . 3  |-  dom  { <. A ,  B >. }  =  { A }
32unieqi 3860 . 2  |-  U. dom  {
<. A ,  B >. }  =  U. { A }
4 cnvsn.1 . . 3  |-  A  e. 
_V
54unisn 3866 . 2  |-  U. { A }  =  A
63, 5eqtri 2226 1  |-  U. dom  {
<. A ,  B >. }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176   _Vcvv 2772   {csn 3633   <.cop 3636   U.cuni 3850   dom cdm 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-dm 4685
This theorem is referenced by:  op1st  6232  fo1st  6243  f1stres  6245  xpassen  6925  xpdom2  6926
  Copyright terms: Public domain W3C validator