ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1sta Unicode version

Theorem op1sta 5147
Description: Extract the first member of an ordered pair. (See op2nda 5150 to extract the second member and op1stb 4509 for an alternate version.) (Contributed by Raph Levien, 4-Dec-2003.)
Hypotheses
Ref Expression
cnvsn.1  |-  A  e. 
_V
cnvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
op1sta  |-  U. dom  {
<. A ,  B >. }  =  A

Proof of Theorem op1sta
StepHypRef Expression
1 cnvsn.2 . . . 4  |-  B  e. 
_V
21dmsnop 5139 . . 3  |-  dom  { <. A ,  B >. }  =  { A }
32unieqi 3845 . 2  |-  U. dom  {
<. A ,  B >. }  =  U. { A }
4 cnvsn.1 . . 3  |-  A  e. 
_V
54unisn 3851 . 2  |-  U. { A }  =  A
63, 5eqtri 2214 1  |-  U. dom  {
<. A ,  B >. }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3618   <.cop 3621   U.cuni 3835   dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-dm 4669
This theorem is referenced by:  op1st  6199  fo1st  6210  f1stres  6212  xpassen  6884  xpdom2  6885
  Copyright terms: Public domain W3C validator