ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpin Unicode version

Theorem dmxpin 4826
Description: The domain of the intersection of two square Cartesian products. Unlike dmin 4812, equality holds. (Contributed by NM, 29-Jan-2008.)
Assertion
Ref Expression
dmxpin  |-  dom  (
( A  X.  A
)  i^i  ( B  X.  B ) )  =  ( A  i^i  B
)

Proof of Theorem dmxpin
StepHypRef Expression
1 inxp 4738 . . 3  |-  ( ( A  X.  A )  i^i  ( B  X.  B ) )  =  ( ( A  i^i  B )  X.  ( A  i^i  B ) )
21dmeqi 4805 . 2  |-  dom  (
( A  X.  A
)  i^i  ( B  X.  B ) )  =  dom  ( ( A  i^i  B )  X.  ( A  i^i  B
) )
3 dmxpid 4825 . 2  |-  dom  (
( A  i^i  B
)  X.  ( A  i^i  B ) )  =  ( A  i^i  B )
42, 3eqtri 2186 1  |-  dom  (
( A  X.  A
)  i^i  ( B  X.  B ) )  =  ( A  i^i  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    i^i cin 3115    X. cxp 4602   dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-dm 4614
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator