| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqi | Unicode version | ||
| Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqi.1 |
|
| Ref | Expression |
|---|---|
| dmeqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqi.1 |
. 2
| |
| 2 | dmeq 4879 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-dm 4686 |
| This theorem is referenced by: dmxpm 4899 dmxpid 4900 dmxpin 4901 rncoss 4950 rncoeq 4953 rnun 5092 rnin 5093 rnxpm 5113 rnxpss 5115 imainrect 5129 dmpropg 5156 dmtpop 5159 rnsnopg 5162 fntpg 5331 fnreseql 5692 dmoprab 6028 reldmmpo 6059 elmpocl 6143 tfrlem8 6406 tfr2a 6409 tfrlemi14d 6421 tfr1onlemres 6437 tfri1dALT 6439 tfrcllemres 6450 xpassen 6927 sbthlemi5 7065 casedm 7190 djudm 7209 ctssdccl 7215 dmaddpi 7440 dmmulpi 7441 dmaddpq 7494 dmmulpq 7495 axaddf 7983 axmulf 7984 ennnfonelemom 12812 ennnfonelemdm 12824 structiedg0val 15670 |
| Copyright terms: Public domain | W3C validator |