| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqi | Unicode version | ||
| Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqi.1 |
|
| Ref | Expression |
|---|---|
| dmeqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqi.1 |
. 2
| |
| 2 | dmeq 4878 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-dm 4685 |
| This theorem is referenced by: dmxpm 4898 dmxpid 4899 dmxpin 4900 rncoss 4949 rncoeq 4952 rnun 5091 rnin 5092 rnxpm 5112 rnxpss 5114 imainrect 5128 dmpropg 5155 dmtpop 5158 rnsnopg 5161 fntpg 5330 fnreseql 5690 dmoprab 6026 reldmmpo 6057 elmpocl 6141 tfrlem8 6404 tfr2a 6407 tfrlemi14d 6419 tfr1onlemres 6435 tfri1dALT 6437 tfrcllemres 6448 xpassen 6925 sbthlemi5 7063 casedm 7188 djudm 7207 ctssdccl 7213 dmaddpi 7438 dmmulpi 7439 dmaddpq 7492 dmmulpq 7493 axaddf 7981 axmulf 7982 ennnfonelemom 12779 ennnfonelemdm 12791 structiedg0val 15637 |
| Copyright terms: Public domain | W3C validator |