| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqi | Unicode version | ||
| Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqi.1 |
|
| Ref | Expression |
|---|---|
| dmeqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqi.1 |
. 2
| |
| 2 | dmeq 4867 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-dm 4674 |
| This theorem is referenced by: dmxpm 4887 dmxpid 4888 dmxpin 4889 rncoss 4937 rncoeq 4940 rnun 5079 rnin 5080 rnxpm 5100 rnxpss 5102 imainrect 5116 dmpropg 5143 dmtpop 5146 rnsnopg 5149 fntpg 5315 fnreseql 5675 dmoprab 6007 reldmmpo 6038 elmpocl 6122 tfrlem8 6385 tfr2a 6388 tfrlemi14d 6400 tfr1onlemres 6416 tfri1dALT 6418 tfrcllemres 6429 xpassen 6898 sbthlemi5 7036 casedm 7161 djudm 7180 ctssdccl 7186 dmaddpi 7409 dmmulpi 7410 dmaddpq 7463 dmmulpq 7464 axaddf 7952 axmulf 7953 ennnfonelemom 12650 ennnfonelemdm 12662 |
| Copyright terms: Public domain | W3C validator |