| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqi | Unicode version | ||
| Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqi.1 |
|
| Ref | Expression |
|---|---|
| dmeqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqi.1 |
. 2
| |
| 2 | dmeq 4897 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-dm 4703 |
| This theorem is referenced by: dmxpm 4917 dmxpid 4918 dmxpin 4919 rncoss 4968 rncoeq 4971 rnun 5110 rnin 5111 rnxpm 5131 rnxpss 5133 imainrect 5147 dmpropg 5174 dmtpop 5177 rnsnopg 5180 fntpg 5349 fnreseql 5713 dmoprab 6049 reldmmpo 6080 elmpocl 6164 tfrlem8 6427 tfr2a 6430 tfrlemi14d 6442 tfr1onlemres 6458 tfri1dALT 6460 tfrcllemres 6471 xpassen 6950 sbthlemi5 7089 casedm 7214 djudm 7233 ctssdccl 7239 dmaddpi 7473 dmmulpi 7474 dmaddpq 7527 dmmulpq 7528 axaddf 8016 axmulf 8017 ennnfonelemom 12894 ennnfonelemdm 12906 structiedg0val 15754 isuhgrm 15782 isushgrm 15783 isupgren 15806 isumgren 15816 |
| Copyright terms: Public domain | W3C validator |