| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqi | Unicode version | ||
| Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqi.1 |
|
| Ref | Expression |
|---|---|
| dmeqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqi.1 |
. 2
| |
| 2 | dmeq 4923 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-dm 4729 |
| This theorem is referenced by: dmxpm 4944 dmxpid 4945 dmxpin 4946 rncoss 4995 rncoeq 4998 rnun 5137 rnin 5138 rnxpm 5158 rnxpss 5160 imainrect 5174 dmpropg 5201 dmtpop 5204 rnsnopg 5207 fntpg 5377 fnreseql 5745 dmoprab 6085 reldmmpo 6116 elmpocl 6200 tfrlem8 6464 tfr2a 6467 tfrlemi14d 6479 tfr1onlemres 6495 tfri1dALT 6497 tfrcllemres 6508 xpassen 6989 sbthlemi5 7128 casedm 7253 djudm 7272 ctssdccl 7278 dmaddpi 7512 dmmulpi 7513 dmaddpq 7566 dmmulpq 7567 axaddf 8055 axmulf 8056 ennnfonelemom 12979 ennnfonelemdm 12991 structiedg0val 15841 isuhgrm 15871 isushgrm 15872 isupgren 15895 isumgren 15905 isuspgren 15955 isusgren 15956 ushgredgedg 16024 ushgredgedgloop 16026 |
| Copyright terms: Public domain | W3C validator |