![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmeqi | Unicode version |
Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
dmeqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
dmeqi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | dmeq 4699 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-sn 3499 df-pr 3500 df-op 3502 df-br 3896 df-dm 4509 |
This theorem is referenced by: dmxpm 4719 dmxpid 4720 dmxpin 4721 rncoss 4767 rncoeq 4770 rnun 4905 rnin 4906 rnxpm 4926 rnxpss 4928 imainrect 4942 dmpropg 4969 dmtpop 4972 rnsnopg 4975 fntpg 5137 fnreseql 5484 dmoprab 5806 reldmmpo 5836 elmpocl 5922 tfrlem8 6169 tfr2a 6172 tfrlemi14d 6184 tfr1onlemres 6200 tfri1dALT 6202 tfrcllemres 6213 xpassen 6677 sbthlemi5 6801 casedm 6923 djudm 6942 ctssdccl 6948 dmaddpi 7081 dmmulpi 7082 dmaddpq 7135 dmmulpq 7136 axaddf 7603 axmulf 7604 ennnfonelemom 11766 ennnfonelemdm 11778 |
Copyright terms: Public domain | W3C validator |