ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inxp Unicode version

Theorem inxp 4812
Description: The intersection of two cross products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
inxp  |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( ( A  i^i  C )  X.  ( B  i^i  D ) )

Proof of Theorem inxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inopab 4810 . . 3  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  i^i  {
<. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) ) }
2 an4 586 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  ( y  e.  B  /\  y  e.  D
) ) )
3 elin 3356 . . . . . 6  |-  ( x  e.  ( A  i^i  C )  <->  ( x  e.  A  /\  x  e.  C ) )
4 elin 3356 . . . . . 6  |-  ( y  e.  ( B  i^i  D )  <->  ( y  e.  B  /\  y  e.  D ) )
53, 4anbi12i 460 . . . . 5  |-  ( ( x  e.  ( A  i^i  C )  /\  y  e.  ( B  i^i  D ) )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  ( y  e.  B  /\  y  e.  D
) ) )
62, 5bitr4i 187 . . . 4  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) )  <->  ( x  e.  ( A  i^i  C
)  /\  y  e.  ( B  i^i  D ) ) )
76opabbii 4111 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) ) }  =  { <. x ,  y >.  |  ( x  e.  ( A  i^i  C )  /\  y  e.  ( B  i^i  D ) ) }
81, 7eqtri 2226 . 2  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  i^i  {
<. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) } )  =  { <. x ,  y >.  |  ( x  e.  ( A  i^i  C )  /\  y  e.  ( B  i^i  D ) ) }
9 df-xp 4681 . . 3  |-  ( A  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  B ) }
10 df-xp 4681 . . 3  |-  ( C  X.  D )  =  { <. x ,  y
>.  |  ( x  e.  C  /\  y  e.  D ) }
119, 10ineq12i 3372 . 2  |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  i^i  { <. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) } )
12 df-xp 4681 . 2  |-  ( ( A  i^i  C )  X.  ( B  i^i  D ) )  =  { <. x ,  y >.  |  ( x  e.  ( A  i^i  C
)  /\  y  e.  ( B  i^i  D ) ) }
138, 11, 123eqtr4i 2236 1  |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( ( A  i^i  C )  X.  ( B  i^i  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2176    i^i cin 3165   {copab 4104    X. cxp 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4106  df-xp 4681  df-rel 4682
This theorem is referenced by:  xpindi  4813  xpindir  4814  dmxpin  4900  xpssres  4994  xpdisj1  5107  xpdisj2  5108  imainrect  5128  xpima1  5129  xpima2m  5130  hashxp  10971  txbas  14730  txrest  14748  metreslem  14852
  Copyright terms: Public domain W3C validator