Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inxp | Unicode version |
Description: The intersection of two cross products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
inxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inopab 4736 | . . 3 | |
2 | an4 576 | . . . . 5 | |
3 | elin 3305 | . . . . . 6 | |
4 | elin 3305 | . . . . . 6 | |
5 | 3, 4 | anbi12i 456 | . . . . 5 |
6 | 2, 5 | bitr4i 186 | . . . 4 |
7 | 6 | opabbii 4049 | . . 3 |
8 | 1, 7 | eqtri 2186 | . 2 |
9 | df-xp 4610 | . . 3 | |
10 | df-xp 4610 | . . 3 | |
11 | 9, 10 | ineq12i 3321 | . 2 |
12 | df-xp 4610 | . 2 | |
13 | 8, 11, 12 | 3eqtr4i 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wcel 2136 cin 3115 copab 4042 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 df-rel 4611 |
This theorem is referenced by: xpindi 4739 xpindir 4740 dmxpin 4826 xpssres 4919 xpdisj1 5028 xpdisj2 5029 imainrect 5049 xpima1 5050 xpima2m 5051 hashxp 10739 txbas 12898 txrest 12916 metreslem 13020 |
Copyright terms: Public domain | W3C validator |