ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpid Unicode version

Theorem dmxpid 4887
Description: The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
Assertion
Ref Expression
dmxpid  |-  dom  ( A  X.  A )  =  A

Proof of Theorem dmxpid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4669 . . 3  |-  ( A  X.  A )  =  { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  A ) }
21dmeqi 4867 . 2  |-  dom  ( A  X.  A )  =  dom  { <. y ,  x >.  |  (
y  e.  A  /\  x  e.  A ) }
3 elex2 2779 . . . 4  |-  ( y  e.  A  ->  E. x  x  e.  A )
43rgen 2550 . . 3  |-  A. y  e.  A  E. x  x  e.  A
5 dmopab3 4879 . . 3  |-  ( A. y  e.  A  E. x  x  e.  A  <->  dom 
{ <. y ,  x >.  |  ( y  e.  A  /\  x  e.  A ) }  =  A )
64, 5mpbi 145 . 2  |-  dom  { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  A
) }  =  A
72, 6eqtri 2217 1  |-  dom  ( A  X.  A )  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   {copab 4093    X. cxp 4661   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-dm 4673
This theorem is referenced by:  dmxpin  4888  xpid11  4889  sqxpeq0  5093  xpider  6665  psmetdmdm  14560  xmetdmdm  14592
  Copyright terms: Public domain W3C validator