ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpid Unicode version

Theorem dmxpid 4908
Description: The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
Assertion
Ref Expression
dmxpid  |-  dom  ( A  X.  A )  =  A

Proof of Theorem dmxpid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4689 . . 3  |-  ( A  X.  A )  =  { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  A ) }
21dmeqi 4888 . 2  |-  dom  ( A  X.  A )  =  dom  { <. y ,  x >.  |  (
y  e.  A  /\  x  e.  A ) }
3 elex2 2790 . . . 4  |-  ( y  e.  A  ->  E. x  x  e.  A )
43rgen 2560 . . 3  |-  A. y  e.  A  E. x  x  e.  A
5 dmopab3 4900 . . 3  |-  ( A. y  e.  A  E. x  x  e.  A  <->  dom 
{ <. y ,  x >.  |  ( y  e.  A  /\  x  e.  A ) }  =  A )
64, 5mpbi 145 . 2  |-  dom  { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  A
) }  =  A
72, 6eqtri 2227 1  |-  dom  ( A  X.  A )  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2177   A.wral 2485   {copab 4112    X. cxp 4681   dom cdm 4683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-dm 4693
This theorem is referenced by:  dmxpin  4909  xpid11  4910  sqxpeq0  5115  xpider  6706  psmetdmdm  14871  xmetdmdm  14903
  Copyright terms: Public domain W3C validator