ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpid Unicode version

Theorem dmxpid 4850
Description: The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
Assertion
Ref Expression
dmxpid  |-  dom  ( A  X.  A )  =  A

Proof of Theorem dmxpid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4634 . . 3  |-  ( A  X.  A )  =  { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  A ) }
21dmeqi 4830 . 2  |-  dom  ( A  X.  A )  =  dom  { <. y ,  x >.  |  (
y  e.  A  /\  x  e.  A ) }
3 elex2 2755 . . . 4  |-  ( y  e.  A  ->  E. x  x  e.  A )
43rgen 2530 . . 3  |-  A. y  e.  A  E. x  x  e.  A
5 dmopab3 4842 . . 3  |-  ( A. y  e.  A  E. x  x  e.  A  <->  dom 
{ <. y ,  x >.  |  ( y  e.  A  /\  x  e.  A ) }  =  A )
64, 5mpbi 145 . 2  |-  dom  { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  A
) }  =  A
72, 6eqtri 2198 1  |-  dom  ( A  X.  A )  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   {copab 4065    X. cxp 4626   dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-dm 4638
This theorem is referenced by:  dmxpin  4851  xpid11  4852  sqxpeq0  5054  xpider  6608  psmetdmdm  13909  xmetdmdm  13941
  Copyright terms: Public domain W3C validator