ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano1nnnn Unicode version

Theorem peano1nnnn 7803
Description: One is an element of  NN. This is a counterpart to 1nn 8878 designed for real number axioms which involve natural numbers (notably, axcaucvg 7851). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
peano1nnnn.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Assertion
Ref Expression
peano1nnnn  |-  1  e.  N
Distinct variable group:    x, y
Allowed substitution hints:    N( x, y)

Proof of Theorem peano1nnnn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 peano1nnnn.n . . . 4  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
21eleq2i 2237 . . 3  |-  ( 1  e.  N  <->  1  e.  |^|
{ x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
3 df-1 7771 . . . . 5  |-  1  =  <. 1R ,  0R >.
4 1sr 7702 . . . . . 6  |-  1R  e.  R.
5 opelreal 7778 . . . . . 6  |-  ( <. 1R ,  0R >.  e.  RR  <->  1R  e.  R. )
64, 5mpbir 145 . . . . 5  |-  <. 1R ,  0R >.  e.  RR
73, 6eqeltri 2243 . . . 4  |-  1  e.  RR
8 elintg 3837 . . . 4  |-  ( 1  e.  RR  ->  (
1  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } 1  e.  z ) )
97, 8ax-mp 5 . . 3  |-  ( 1  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  {
x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) } 1  e.  z )
102, 9bitri 183 . 2  |-  ( 1  e.  N  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } 1  e.  z )
11 vex 2733 . . . 4  |-  z  e. 
_V
12 eleq2 2234 . . . . 5  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
13 eleq2 2234 . . . . . 6  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
1413raleqbi1dv 2673 . . . . 5  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
1512, 14anbi12d 470 . . . 4  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
1611, 15elab 2874 . . 3  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )
1716simplbi 272 . 2  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  1  e.  z )
1810, 17mprgbir 2528 1  |-  1  e.  N
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   <.cop 3584   |^|cint 3829  (class class class)co 5851   R.cnr 7248   0Rc0r 7249   1Rc1r 7250   RRcr 7762   1c1 7764    + caddc 7766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-1o 6393  df-2o 6394  df-oadd 6397  df-omul 6398  df-er 6510  df-ec 6512  df-qs 6516  df-ni 7255  df-pli 7256  df-mi 7257  df-lti 7258  df-plpq 7295  df-mpq 7296  df-enq 7298  df-nqqs 7299  df-plqqs 7300  df-mqqs 7301  df-1nqqs 7302  df-rq 7303  df-ltnqqs 7304  df-enq0 7375  df-nq0 7376  df-0nq0 7377  df-plq0 7378  df-mq0 7379  df-inp 7417  df-i1p 7418  df-iplp 7419  df-enr 7677  df-nr 7678  df-0r 7682  df-1r 7683  df-1 7771  df-r 7773
This theorem is referenced by:  nnindnn  7844
  Copyright terms: Public domain W3C validator