ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano1nnnn Unicode version

Theorem peano1nnnn 7784
Description: One is an element of  NN. This is a counterpart to 1nn 8859 designed for real number axioms which involve natural numbers (notably, axcaucvg 7832). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
peano1nnnn.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Assertion
Ref Expression
peano1nnnn  |-  1  e.  N
Distinct variable group:    x, y
Allowed substitution hints:    N( x, y)

Proof of Theorem peano1nnnn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 peano1nnnn.n . . . 4  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
21eleq2i 2231 . . 3  |-  ( 1  e.  N  <->  1  e.  |^|
{ x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
3 df-1 7752 . . . . 5  |-  1  =  <. 1R ,  0R >.
4 1sr 7683 . . . . . 6  |-  1R  e.  R.
5 opelreal 7759 . . . . . 6  |-  ( <. 1R ,  0R >.  e.  RR  <->  1R  e.  R. )
64, 5mpbir 145 . . . . 5  |-  <. 1R ,  0R >.  e.  RR
73, 6eqeltri 2237 . . . 4  |-  1  e.  RR
8 elintg 3826 . . . 4  |-  ( 1  e.  RR  ->  (
1  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } 1  e.  z ) )
97, 8ax-mp 5 . . 3  |-  ( 1  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  {
x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) } 1  e.  z )
102, 9bitri 183 . 2  |-  ( 1  e.  N  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } 1  e.  z )
11 vex 2724 . . . 4  |-  z  e. 
_V
12 eleq2 2228 . . . . 5  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
13 eleq2 2228 . . . . . 6  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
1413raleqbi1dv 2667 . . . . 5  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
1512, 14anbi12d 465 . . . 4  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
1611, 15elab 2865 . . 3  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )
1716simplbi 272 . 2  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  1  e.  z )
1810, 17mprgbir 2522 1  |-  1  e.  N
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   {cab 2150   A.wral 2442   <.cop 3573   |^|cint 3818  (class class class)co 5836   R.cnr 7229   0Rc0r 7230   1Rc1r 7231   RRcr 7743   1c1 7745    + caddc 7747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-2o 6376  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285  df-enq0 7356  df-nq0 7357  df-0nq0 7358  df-plq0 7359  df-mq0 7360  df-inp 7398  df-i1p 7399  df-iplp 7400  df-enr 7658  df-nr 7659  df-0r 7663  df-1r 7664  df-1 7752  df-r 7754
This theorem is referenced by:  nnindnn  7825
  Copyright terms: Public domain W3C validator