ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano1nnnn Unicode version

Theorem peano1nnnn 7387
Description: One is an element of  NN. This is a counterpart to 1nn 8431 designed for real number axioms which involve natural numbers (notably, axcaucvg 7433). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
peano1nnnn.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Assertion
Ref Expression
peano1nnnn  |-  1  e.  N
Distinct variable group:    x, y
Allowed substitution hints:    N( x, y)

Proof of Theorem peano1nnnn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 peano1nnnn.n . . . 4  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
21eleq2i 2154 . . 3  |-  ( 1  e.  N  <->  1  e.  |^|
{ x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
3 df-1 7356 . . . . 5  |-  1  =  <. 1R ,  0R >.
4 1sr 7295 . . . . . 6  |-  1R  e.  R.
5 opelreal 7363 . . . . . 6  |-  ( <. 1R ,  0R >.  e.  RR  <->  1R  e.  R. )
64, 5mpbir 144 . . . . 5  |-  <. 1R ,  0R >.  e.  RR
73, 6eqeltri 2160 . . . 4  |-  1  e.  RR
8 elintg 3696 . . . 4  |-  ( 1  e.  RR  ->  (
1  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } 1  e.  z ) )
97, 8ax-mp 7 . . 3  |-  ( 1  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  {
x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) } 1  e.  z )
102, 9bitri 182 . 2  |-  ( 1  e.  N  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } 1  e.  z )
11 vex 2622 . . . 4  |-  z  e. 
_V
12 eleq2 2151 . . . . 5  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
13 eleq2 2151 . . . . . 6  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
1413raleqbi1dv 2570 . . . . 5  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
1512, 14anbi12d 457 . . . 4  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
1611, 15elab 2760 . . 3  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )
1716simplbi 268 . 2  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  1  e.  z )
1810, 17mprgbir 2433 1  |-  1  e.  N
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   {cab 2074   A.wral 2359   <.cop 3449   |^|cint 3688  (class class class)co 5652   R.cnr 6854   0Rc0r 6855   1Rc1r 6856   RRcr 7347   1c1 7349    + caddc 7351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-2o 6182  df-oadd 6185  df-omul 6186  df-er 6290  df-ec 6292  df-qs 6296  df-ni 6861  df-pli 6862  df-mi 6863  df-lti 6864  df-plpq 6901  df-mpq 6902  df-enq 6904  df-nqqs 6905  df-plqqs 6906  df-mqqs 6907  df-1nqqs 6908  df-rq 6909  df-ltnqqs 6910  df-enq0 6981  df-nq0 6982  df-0nq0 6983  df-plq0 6984  df-mq0 6985  df-inp 7023  df-i1p 7024  df-iplp 7025  df-enr 7270  df-nr 7271  df-0r 7275  df-1r 7276  df-1 7356  df-r 7358
This theorem is referenced by:  nnindnn  7426
  Copyright terms: Public domain W3C validator