ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano1nnnn Unicode version

Theorem peano1nnnn 7882
Description: One is an element of  NN. This is a counterpart to 1nn 8961 designed for real number axioms which involve natural numbers (notably, axcaucvg 7930). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
peano1nnnn.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Assertion
Ref Expression
peano1nnnn  |-  1  e.  N
Distinct variable group:    x, y
Allowed substitution hints:    N( x, y)

Proof of Theorem peano1nnnn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 peano1nnnn.n . . . 4  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
21eleq2i 2256 . . 3  |-  ( 1  e.  N  <->  1  e.  |^|
{ x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
3 df-1 7850 . . . . 5  |-  1  =  <. 1R ,  0R >.
4 1sr 7781 . . . . . 6  |-  1R  e.  R.
5 opelreal 7857 . . . . . 6  |-  ( <. 1R ,  0R >.  e.  RR  <->  1R  e.  R. )
64, 5mpbir 146 . . . . 5  |-  <. 1R ,  0R >.  e.  RR
73, 6eqeltri 2262 . . . 4  |-  1  e.  RR
8 elintg 3867 . . . 4  |-  ( 1  e.  RR  ->  (
1  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } 1  e.  z ) )
97, 8ax-mp 5 . . 3  |-  ( 1  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  {
x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) } 1  e.  z )
102, 9bitri 184 . 2  |-  ( 1  e.  N  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } 1  e.  z )
11 vex 2755 . . . 4  |-  z  e. 
_V
12 eleq2 2253 . . . . 5  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
13 eleq2 2253 . . . . . 6  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
1413raleqbi1dv 2694 . . . . 5  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
1512, 14anbi12d 473 . . . 4  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
1611, 15elab 2896 . . 3  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )
1716simplbi 274 . 2  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  1  e.  z )
1810, 17mprgbir 2548 1  |-  1  e.  N
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   {cab 2175   A.wral 2468   <.cop 3610   |^|cint 3859  (class class class)co 5897   R.cnr 7327   0Rc0r 7328   1Rc1r 7329   RRcr 7841   1c1 7843    + caddc 7845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-1o 6442  df-2o 6443  df-oadd 6446  df-omul 6447  df-er 6560  df-ec 6562  df-qs 6566  df-ni 7334  df-pli 7335  df-mi 7336  df-lti 7337  df-plpq 7374  df-mpq 7375  df-enq 7377  df-nqqs 7378  df-plqqs 7379  df-mqqs 7380  df-1nqqs 7381  df-rq 7382  df-ltnqqs 7383  df-enq0 7454  df-nq0 7455  df-0nq0 7456  df-plq0 7457  df-mq0 7458  df-inp 7496  df-i1p 7497  df-iplp 7498  df-enr 7756  df-nr 7757  df-0r 7761  df-1r 7762  df-1 7850  df-r 7852
This theorem is referenced by:  nnindnn  7923
  Copyright terms: Public domain W3C validator