ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemdm Unicode version

Theorem ennnfonelemdm 12387
Description: Lemma for ennnfone 12392. The function  L is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfone.l  |-  L  = 
U_ i  e.  NN0  ( H `  i )
Assertion
Ref Expression
ennnfonelemdm  |-  ( ph  ->  dom  L  =  om )
Distinct variable groups:    A, j, x, y    j, F, k, n    x, F, y, k    j, G    i, H, j, k, n    x, H, y, i    j, J   
i, L, j, x, y    j, N, k, n    x, N, y    ph, i, j, k, n    ph, x, y
Allowed substitution hints:    A( i, k, n)    F( i)    G( x, y, i, k, n)    J( x, y, i, k, n)    L( k, n)    N( i)

Proof of Theorem ennnfonelemdm
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 ennnfone.l . . . . . . . . . . 11  |-  L  = 
U_ i  e.  NN0  ( H `  i )
21dmeqi 4821 . . . . . . . . . 10  |-  dom  L  =  dom  U_ i  e.  NN0  ( H `  i )
3 dmiun 4829 . . . . . . . . . 10  |-  dom  U_ i  e.  NN0  ( H `  i )  =  U_ i  e.  NN0  dom  ( H `  i )
42, 3eqtri 2196 . . . . . . . . 9  |-  dom  L  =  U_ i  e.  NN0  dom  ( H `  i
)
54eleq2i 2242 . . . . . . . 8  |-  ( m  e.  dom  L  <->  m  e.  U_ i  e.  NN0  dom  ( H `  i ) )
65biimpi 120 . . . . . . 7  |-  ( m  e.  dom  L  ->  m  e.  U_ i  e. 
NN0  dom  ( H `  i ) )
76adantl 277 . . . . . 6  |-  ( (
ph  /\  m  e.  dom  L )  ->  m  e.  U_ i  e.  NN0  dom  ( H `  i
) )
8 eliun 3886 . . . . . 6  |-  ( m  e.  U_ i  e. 
NN0  dom  ( H `  i )  <->  E. i  e.  NN0  m  e.  dom  ( H `  i ) )
97, 8sylib 122 . . . . 5  |-  ( (
ph  /\  m  e.  dom  L )  ->  E. i  e.  NN0  m  e.  dom  ( H `  i ) )
10 simprr 531 . . . . . 6  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  m  e.  dom  ( H `  i ) )
11 ennnfonelemh.dceq . . . . . . . 8  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
1211ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
13 ennnfonelemh.f . . . . . . . 8  |-  ( ph  ->  F : om -onto-> A
)
1413ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  F : om -onto-> A )
15 ennnfonelemh.ne . . . . . . . 8  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
1615ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
17 ennnfonelemh.g . . . . . . 7  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
18 ennnfonelemh.n . . . . . . 7  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
19 ennnfonelemh.j . . . . . . 7  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
20 ennnfonelemh.h . . . . . . 7  |-  H  =  seq 0 ( G ,  J )
21 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  i  e.  NN0 )
2212, 14, 16, 17, 18, 19, 20, 21ennnfonelemom 12375 . . . . . 6  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  dom  ( H `  i )  e.  om )
23 elnn 4599 . . . . . 6  |-  ( ( m  e.  dom  ( H `  i )  /\  dom  ( H `  i )  e.  om )  ->  m  e.  om )
2410, 22, 23syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  m  e.  om )
259, 24rexlimddv 2597 . . . 4  |-  ( (
ph  /\  m  e.  dom  L )  ->  m  e.  om )
2625ex 115 . . 3  |-  ( ph  ->  ( m  e.  dom  L  ->  m  e.  om ) )
2726ssrdv 3159 . 2  |-  ( ph  ->  dom  L  C_  om )
2811adantr 276 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
2913adantr 276 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  F : om -onto-> A )
3015adantr 276 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
31 simpr 110 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  om )
3228, 29, 30, 17, 18, 19, 20, 31ennnfonelemhom 12382 . . . 4  |-  ( (
ph  /\  m  e.  om )  ->  E. i  e.  NN0  m  e.  dom  ( H `  i ) )
3332, 8sylibr 134 . . 3  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  U_ i  e.  NN0  dom  ( H `  i ) )
3433, 4eleqtrrdi 2269 . 2  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  dom  L )
3527, 34eqelssd 3172 1  |-  ( ph  ->  dom  L  =  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 834    = wceq 1353    e. wcel 2146    =/= wne 2345   A.wral 2453   E.wrex 2454    u. cun 3125   (/)c0 3420   ifcif 3532   {csn 3589   <.cop 3592   U_ciun 3882    |-> cmpt 4059   suc csuc 4359   omcom 4583   `'ccnv 4619   dom cdm 4620   "cima 4623   -onto->wfo 5206   ` cfv 5208  (class class class)co 5865    e. cmpo 5867  freccfrec 6381    ^pm cpm 6639   0cc0 7786   1c1 7787    + caddc 7789    - cmin 8102   NN0cn0 9147   ZZcz 9224    seqcseq 10413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pm 6641  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8891  df-n0 9148  df-z 9225  df-uz 9500  df-seqfrec 10414
This theorem is referenced by:  ennnfonelemen  12388
  Copyright terms: Public domain W3C validator