ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemdm Unicode version

Theorem ennnfonelemdm 11969
Description: Lemma for ennnfone 11974. The function  L is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfone.l  |-  L  = 
U_ i  e.  NN0  ( H `  i )
Assertion
Ref Expression
ennnfonelemdm  |-  ( ph  ->  dom  L  =  om )
Distinct variable groups:    A, j, x, y    j, F, k, n    x, F, y, k    j, G    i, H, j, k, n    x, H, y, i    j, J   
i, L, j, x, y    j, N, k, n    x, N, y    ph, i, j, k, n    ph, x, y
Allowed substitution hints:    A( i, k, n)    F( i)    G( x, y, i, k, n)    J( x, y, i, k, n)    L( k, n)    N( i)

Proof of Theorem ennnfonelemdm
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 ennnfone.l . . . . . . . . . . 11  |-  L  = 
U_ i  e.  NN0  ( H `  i )
21dmeqi 4748 . . . . . . . . . 10  |-  dom  L  =  dom  U_ i  e.  NN0  ( H `  i )
3 dmiun 4756 . . . . . . . . . 10  |-  dom  U_ i  e.  NN0  ( H `  i )  =  U_ i  e.  NN0  dom  ( H `  i )
42, 3eqtri 2161 . . . . . . . . 9  |-  dom  L  =  U_ i  e.  NN0  dom  ( H `  i
)
54eleq2i 2207 . . . . . . . 8  |-  ( m  e.  dom  L  <->  m  e.  U_ i  e.  NN0  dom  ( H `  i ) )
65biimpi 119 . . . . . . 7  |-  ( m  e.  dom  L  ->  m  e.  U_ i  e. 
NN0  dom  ( H `  i ) )
76adantl 275 . . . . . 6  |-  ( (
ph  /\  m  e.  dom  L )  ->  m  e.  U_ i  e.  NN0  dom  ( H `  i
) )
8 eliun 3825 . . . . . 6  |-  ( m  e.  U_ i  e. 
NN0  dom  ( H `  i )  <->  E. i  e.  NN0  m  e.  dom  ( H `  i ) )
97, 8sylib 121 . . . . 5  |-  ( (
ph  /\  m  e.  dom  L )  ->  E. i  e.  NN0  m  e.  dom  ( H `  i ) )
10 simprr 522 . . . . . 6  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  m  e.  dom  ( H `  i ) )
11 ennnfonelemh.dceq . . . . . . . 8  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
1211ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
13 ennnfonelemh.f . . . . . . . 8  |-  ( ph  ->  F : om -onto-> A
)
1413ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  F : om -onto-> A )
15 ennnfonelemh.ne . . . . . . . 8  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
1615ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
17 ennnfonelemh.g . . . . . . 7  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
18 ennnfonelemh.n . . . . . . 7  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
19 ennnfonelemh.j . . . . . . 7  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
20 ennnfonelemh.h . . . . . . 7  |-  H  =  seq 0 ( G ,  J )
21 simprl 521 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  i  e.  NN0 )
2212, 14, 16, 17, 18, 19, 20, 21ennnfonelemom 11957 . . . . . 6  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  dom  ( H `  i )  e.  om )
23 elnn 4527 . . . . . 6  |-  ( ( m  e.  dom  ( H `  i )  /\  dom  ( H `  i )  e.  om )  ->  m  e.  om )
2410, 22, 23syl2anc 409 . . . . 5  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  m  e.  om )
259, 24rexlimddv 2557 . . . 4  |-  ( (
ph  /\  m  e.  dom  L )  ->  m  e.  om )
2625ex 114 . . 3  |-  ( ph  ->  ( m  e.  dom  L  ->  m  e.  om ) )
2726ssrdv 3108 . 2  |-  ( ph  ->  dom  L  C_  om )
2811adantr 274 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
2913adantr 274 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  F : om -onto-> A )
3015adantr 274 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
31 simpr 109 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  om )
3228, 29, 30, 17, 18, 19, 20, 31ennnfonelemhom 11964 . . . 4  |-  ( (
ph  /\  m  e.  om )  ->  E. i  e.  NN0  m  e.  dom  ( H `  i ) )
3332, 8sylibr 133 . . 3  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  U_ i  e.  NN0  dom  ( H `  i ) )
3433, 4eleqtrrdi 2234 . 2  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  dom  L )
3527, 34eqelssd 3121 1  |-  ( ph  ->  dom  L  =  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 820    = wceq 1332    e. wcel 1481    =/= wne 2309   A.wral 2417   E.wrex 2418    u. cun 3074   (/)c0 3368   ifcif 3479   {csn 3532   <.cop 3535   U_ciun 3821    |-> cmpt 3997   suc csuc 4295   omcom 4512   `'ccnv 4546   dom cdm 4547   "cima 4550   -onto->wfo 5129   ` cfv 5131  (class class class)co 5782    e. cmpo 5784  freccfrec 6295    ^pm cpm 6551   0cc0 7644   1c1 7645    + caddc 7647    - cmin 7957   NN0cn0 9001   ZZcz 9078    seqcseq 10249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pm 6553  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-seqfrec 10250
This theorem is referenced by:  ennnfonelemen  11970
  Copyright terms: Public domain W3C validator