ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemdm Unicode version

Theorem ennnfonelemdm 12434
Description: Lemma for ennnfone 12439. The function  L is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfone.l  |-  L  = 
U_ i  e.  NN0  ( H `  i )
Assertion
Ref Expression
ennnfonelemdm  |-  ( ph  ->  dom  L  =  om )
Distinct variable groups:    A, j, x, y    j, F, k, n    x, F, y, k    j, G    i, H, j, k, n    x, H, y, i    j, J   
i, L, j, x, y    j, N, k, n    x, N, y    ph, i, j, k, n    ph, x, y
Allowed substitution hints:    A( i, k, n)    F( i)    G( x, y, i, k, n)    J( x, y, i, k, n)    L( k, n)    N( i)

Proof of Theorem ennnfonelemdm
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 ennnfone.l . . . . . . . . . . 11  |-  L  = 
U_ i  e.  NN0  ( H `  i )
21dmeqi 4840 . . . . . . . . . 10  |-  dom  L  =  dom  U_ i  e.  NN0  ( H `  i )
3 dmiun 4848 . . . . . . . . . 10  |-  dom  U_ i  e.  NN0  ( H `  i )  =  U_ i  e.  NN0  dom  ( H `  i )
42, 3eqtri 2208 . . . . . . . . 9  |-  dom  L  =  U_ i  e.  NN0  dom  ( H `  i
)
54eleq2i 2254 . . . . . . . 8  |-  ( m  e.  dom  L  <->  m  e.  U_ i  e.  NN0  dom  ( H `  i ) )
65biimpi 120 . . . . . . 7  |-  ( m  e.  dom  L  ->  m  e.  U_ i  e. 
NN0  dom  ( H `  i ) )
76adantl 277 . . . . . 6  |-  ( (
ph  /\  m  e.  dom  L )  ->  m  e.  U_ i  e.  NN0  dom  ( H `  i
) )
8 eliun 3902 . . . . . 6  |-  ( m  e.  U_ i  e. 
NN0  dom  ( H `  i )  <->  E. i  e.  NN0  m  e.  dom  ( H `  i ) )
97, 8sylib 122 . . . . 5  |-  ( (
ph  /\  m  e.  dom  L )  ->  E. i  e.  NN0  m  e.  dom  ( H `  i ) )
10 simprr 531 . . . . . 6  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  m  e.  dom  ( H `  i ) )
11 ennnfonelemh.dceq . . . . . . . 8  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
1211ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
13 ennnfonelemh.f . . . . . . . 8  |-  ( ph  ->  F : om -onto-> A
)
1413ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  F : om -onto-> A )
15 ennnfonelemh.ne . . . . . . . 8  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
1615ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
17 ennnfonelemh.g . . . . . . 7  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
18 ennnfonelemh.n . . . . . . 7  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
19 ennnfonelemh.j . . . . . . 7  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
20 ennnfonelemh.h . . . . . . 7  |-  H  =  seq 0 ( G ,  J )
21 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  i  e.  NN0 )
2212, 14, 16, 17, 18, 19, 20, 21ennnfonelemom 12422 . . . . . 6  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  dom  ( H `  i )  e.  om )
23 elnn 4617 . . . . . 6  |-  ( ( m  e.  dom  ( H `  i )  /\  dom  ( H `  i )  e.  om )  ->  m  e.  om )
2410, 22, 23syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  m  e.  om )
259, 24rexlimddv 2609 . . . 4  |-  ( (
ph  /\  m  e.  dom  L )  ->  m  e.  om )
2625ex 115 . . 3  |-  ( ph  ->  ( m  e.  dom  L  ->  m  e.  om ) )
2726ssrdv 3173 . 2  |-  ( ph  ->  dom  L  C_  om )
2811adantr 276 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
2913adantr 276 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  F : om -onto-> A )
3015adantr 276 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
31 simpr 110 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  om )
3228, 29, 30, 17, 18, 19, 20, 31ennnfonelemhom 12429 . . . 4  |-  ( (
ph  /\  m  e.  om )  ->  E. i  e.  NN0  m  e.  dom  ( H `  i ) )
3332, 8sylibr 134 . . 3  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  U_ i  e.  NN0  dom  ( H `  i ) )
3433, 4eleqtrrdi 2281 . 2  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  dom  L )
3527, 34eqelssd 3186 1  |-  ( ph  ->  dom  L  =  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1363    e. wcel 2158    =/= wne 2357   A.wral 2465   E.wrex 2466    u. cun 3139   (/)c0 3434   ifcif 3546   {csn 3604   <.cop 3607   U_ciun 3898    |-> cmpt 4076   suc csuc 4377   omcom 4601   `'ccnv 4637   dom cdm 4638   "cima 4641   -onto->wfo 5226   ` cfv 5228  (class class class)co 5888    e. cmpo 5890  freccfrec 6404    ^pm cpm 6662   0cc0 7824   1c1 7825    + caddc 7827    - cmin 8141   NN0cn0 9189   ZZcz 9266    seqcseq 10458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-pm 6664  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-inn 8933  df-n0 9190  df-z 9267  df-uz 9542  df-seqfrec 10459
This theorem is referenced by:  ennnfonelemen  12435
  Copyright terms: Public domain W3C validator