ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemdm Unicode version

Theorem ennnfonelemdm 12446
Description: Lemma for ennnfone 12451. The function  L is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfone.l  |-  L  = 
U_ i  e.  NN0  ( H `  i )
Assertion
Ref Expression
ennnfonelemdm  |-  ( ph  ->  dom  L  =  om )
Distinct variable groups:    A, j, x, y    j, F, k, n    x, F, y, k    j, G    i, H, j, k, n    x, H, y, i    j, J   
i, L, j, x, y    j, N, k, n    x, N, y    ph, i, j, k, n    ph, x, y
Allowed substitution hints:    A( i, k, n)    F( i)    G( x, y, i, k, n)    J( x, y, i, k, n)    L( k, n)    N( i)

Proof of Theorem ennnfonelemdm
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 ennnfone.l . . . . . . . . . . 11  |-  L  = 
U_ i  e.  NN0  ( H `  i )
21dmeqi 4843 . . . . . . . . . 10  |-  dom  L  =  dom  U_ i  e.  NN0  ( H `  i )
3 dmiun 4851 . . . . . . . . . 10  |-  dom  U_ i  e.  NN0  ( H `  i )  =  U_ i  e.  NN0  dom  ( H `  i )
42, 3eqtri 2210 . . . . . . . . 9  |-  dom  L  =  U_ i  e.  NN0  dom  ( H `  i
)
54eleq2i 2256 . . . . . . . 8  |-  ( m  e.  dom  L  <->  m  e.  U_ i  e.  NN0  dom  ( H `  i ) )
65biimpi 120 . . . . . . 7  |-  ( m  e.  dom  L  ->  m  e.  U_ i  e. 
NN0  dom  ( H `  i ) )
76adantl 277 . . . . . 6  |-  ( (
ph  /\  m  e.  dom  L )  ->  m  e.  U_ i  e.  NN0  dom  ( H `  i
) )
8 eliun 3905 . . . . . 6  |-  ( m  e.  U_ i  e. 
NN0  dom  ( H `  i )  <->  E. i  e.  NN0  m  e.  dom  ( H `  i ) )
97, 8sylib 122 . . . . 5  |-  ( (
ph  /\  m  e.  dom  L )  ->  E. i  e.  NN0  m  e.  dom  ( H `  i ) )
10 simprr 531 . . . . . 6  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  m  e.  dom  ( H `  i ) )
11 ennnfonelemh.dceq . . . . . . . 8  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
1211ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
13 ennnfonelemh.f . . . . . . . 8  |-  ( ph  ->  F : om -onto-> A
)
1413ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  F : om -onto-> A )
15 ennnfonelemh.ne . . . . . . . 8  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
1615ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
17 ennnfonelemh.g . . . . . . 7  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
18 ennnfonelemh.n . . . . . . 7  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
19 ennnfonelemh.j . . . . . . 7  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
20 ennnfonelemh.h . . . . . . 7  |-  H  =  seq 0 ( G ,  J )
21 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  i  e.  NN0 )
2212, 14, 16, 17, 18, 19, 20, 21ennnfonelemom 12434 . . . . . 6  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  dom  ( H `  i )  e.  om )
23 elnn 4620 . . . . . 6  |-  ( ( m  e.  dom  ( H `  i )  /\  dom  ( H `  i )  e.  om )  ->  m  e.  om )
2410, 22, 23syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  m  e.  dom  L )  /\  ( i  e.  NN0  /\  m  e.  dom  ( H `  i )
) )  ->  m  e.  om )
259, 24rexlimddv 2612 . . . 4  |-  ( (
ph  /\  m  e.  dom  L )  ->  m  e.  om )
2625ex 115 . . 3  |-  ( ph  ->  ( m  e.  dom  L  ->  m  e.  om ) )
2726ssrdv 3176 . 2  |-  ( ph  ->  dom  L  C_  om )
2811adantr 276 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
2913adantr 276 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  F : om -onto-> A )
3015adantr 276 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
31 simpr 110 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  om )
3228, 29, 30, 17, 18, 19, 20, 31ennnfonelemhom 12441 . . . 4  |-  ( (
ph  /\  m  e.  om )  ->  E. i  e.  NN0  m  e.  dom  ( H `  i ) )
3332, 8sylibr 134 . . 3  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  U_ i  e.  NN0  dom  ( H `  i ) )
3433, 4eleqtrrdi 2283 . 2  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  dom  L )
3527, 34eqelssd 3189 1  |-  ( ph  ->  dom  L  =  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2160    =/= wne 2360   A.wral 2468   E.wrex 2469    u. cun 3142   (/)c0 3437   ifcif 3549   {csn 3607   <.cop 3610   U_ciun 3901    |-> cmpt 4079   suc csuc 4380   omcom 4604   `'ccnv 4640   dom cdm 4641   "cima 4644   -onto->wfo 5230   ` cfv 5232  (class class class)co 5892    e. cmpo 5894  freccfrec 6410    ^pm cpm 6668   0cc0 7831   1c1 7832    + caddc 7834    - cmin 8148   NN0cn0 9196   ZZcz 9273    seqcseq 10465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7922  ax-resscn 7923  ax-1cn 7924  ax-1re 7925  ax-icn 7926  ax-addcl 7927  ax-addrcl 7928  ax-mulcl 7929  ax-addcom 7931  ax-addass 7933  ax-distr 7935  ax-i2m1 7936  ax-0lt1 7937  ax-0id 7939  ax-rnegex 7940  ax-cnre 7942  ax-pre-ltirr 7943  ax-pre-ltwlin 7944  ax-pre-lttrn 7945  ax-pre-ltadd 7947
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-recs 6325  df-frec 6411  df-pm 6670  df-pnf 8014  df-mnf 8015  df-xr 8016  df-ltxr 8017  df-le 8018  df-sub 8150  df-neg 8151  df-inn 8940  df-n0 9197  df-z 9274  df-uz 9549  df-seqfrec 10466
This theorem is referenced by:  ennnfonelemen  12447
  Copyright terms: Public domain W3C validator