ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrrdi Unicode version

Theorem eqeltrrdi 2297
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eqeltrrdi.1  |-  ( ph  ->  B  =  A )
eqeltrrdi.2  |-  B  e.  C
Assertion
Ref Expression
eqeltrrdi  |-  ( ph  ->  A  e.  C )

Proof of Theorem eqeltrrdi
StepHypRef Expression
1 eqeltrrdi.1 . . 3  |-  ( ph  ->  B  =  A )
21eqcomd 2211 . 2  |-  ( ph  ->  A  =  B )
3 eqeltrrdi.2 . 2  |-  B  e.  C
42, 3eqeltrdi 2296 1  |-  ( ph  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-clel 2201
This theorem is referenced by:  eusvnfb  4502  releldm2  6273  mapprc  6741  ixpprc  6808  ixpssmap2g  6816  ixpssmapg  6817  bren  6837  brdomg  6839  mapen  6945  ssenen  6950  fi0  7079  nnnninf2  7231  ioof  10095  hashfacen  10983  fsum3  11731  psrval  14461  cnrehmeocntop  15115
  Copyright terms: Public domain W3C validator