ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrrdi Unicode version

Theorem eqeltrrdi 2258
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eqeltrrdi.1  |-  ( ph  ->  B  =  A )
eqeltrrdi.2  |-  B  e.  C
Assertion
Ref Expression
eqeltrrdi  |-  ( ph  ->  A  e.  C )

Proof of Theorem eqeltrrdi
StepHypRef Expression
1 eqeltrrdi.1 . . 3  |-  ( ph  ->  B  =  A )
21eqcomd 2171 . 2  |-  ( ph  ->  A  =  B )
3 eqeltrrdi.2 . 2  |-  B  e.  C
42, 3eqeltrdi 2257 1  |-  ( ph  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161
This theorem is referenced by:  eusvnfb  4432  releldm2  6153  mapprc  6618  ixpprc  6685  ixpssmap2g  6693  ixpssmapg  6694  bren  6713  brdomg  6714  mapen  6812  ssenen  6817  fi0  6940  nnnninf2  7091  ioof  9907  hashfacen  10749  fsum3  11328  cnrehmeocntop  13233
  Copyright terms: Public domain W3C validator