Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltrrdi | Unicode version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrdi.1 | |
eqeltrrdi.2 |
Ref | Expression |
---|---|
eqeltrrdi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrdi.1 | . . 3 | |
2 | 1 | eqcomd 2171 | . 2 |
3 | eqeltrrdi.2 | . 2 | |
4 | 2, 3 | eqeltrdi 2257 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: eusvnfb 4432 releldm2 6153 mapprc 6618 ixpprc 6685 ixpssmap2g 6693 ixpssmapg 6694 bren 6713 brdomg 6714 mapen 6812 ssenen 6817 fi0 6940 nnnninf2 7091 ioof 9907 hashfacen 10749 fsum3 11328 cnrehmeocntop 13233 |
Copyright terms: Public domain | W3C validator |