ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrrdi Unicode version

Theorem eqeltrrdi 2285
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eqeltrrdi.1  |-  ( ph  ->  B  =  A )
eqeltrrdi.2  |-  B  e.  C
Assertion
Ref Expression
eqeltrrdi  |-  ( ph  ->  A  e.  C )

Proof of Theorem eqeltrrdi
StepHypRef Expression
1 eqeltrrdi.1 . . 3  |-  ( ph  ->  B  =  A )
21eqcomd 2199 . 2  |-  ( ph  ->  A  =  B )
3 eqeltrrdi.2 . 2  |-  B  e.  C
42, 3eqeltrdi 2284 1  |-  ( ph  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189
This theorem is referenced by:  eusvnfb  4486  releldm2  6240  mapprc  6708  ixpprc  6775  ixpssmap2g  6783  ixpssmapg  6784  bren  6803  brdomg  6804  mapen  6904  ssenen  6909  fi0  7036  nnnninf2  7188  ioof  10040  hashfacen  10910  fsum3  11533  psrval  14163  cnrehmeocntop  14789
  Copyright terms: Public domain W3C validator