ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpprc Unicode version

Theorem ixpprc 6866
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain  A, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpprc  |-  ( -.  A  e.  _V  ->  X_ x  e.  A  B  =  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem ixpprc
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ixpfn 6851 . . . . 5  |-  ( f  e.  X_ x  e.  A  B  ->  f  Fn  A
)
2 fndm 5420 . . . . . 6  |-  ( f  Fn  A  ->  dom  f  =  A )
3 vex 2802 . . . . . . 7  |-  f  e. 
_V
43dmex 4991 . . . . . 6  |-  dom  f  e.  _V
52, 4eqeltrrdi 2321 . . . . 5  |-  ( f  Fn  A  ->  A  e.  _V )
61, 5syl 14 . . . 4  |-  ( f  e.  X_ x  e.  A  B  ->  A  e.  _V )
76exlimiv 1644 . . 3  |-  ( E. f  f  e.  X_ x  e.  A  B  ->  A  e.  _V )
87con3i 635 . 2  |-  ( -.  A  e.  _V  ->  -. 
E. f  f  e.  X_ x  e.  A  B )
9 notm0 3512 . 2  |-  ( -. 
E. f  f  e.  X_ x  e.  A  B 
<-> 
X_ x  e.  A  B  =  (/) )
108, 9sylib 122 1  |-  ( -.  A  e.  _V  ->  X_ x  e.  A  B  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799   (/)c0 3491   dom cdm 4719    Fn wfn 5313   X_cixp 6845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ixp 6846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator