ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpprc Unicode version

Theorem ixpprc 6775
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain  A, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpprc  |-  ( -.  A  e.  _V  ->  X_ x  e.  A  B  =  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem ixpprc
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ixpfn 6760 . . . . 5  |-  ( f  e.  X_ x  e.  A  B  ->  f  Fn  A
)
2 fndm 5354 . . . . . 6  |-  ( f  Fn  A  ->  dom  f  =  A )
3 vex 2763 . . . . . . 7  |-  f  e. 
_V
43dmex 4929 . . . . . 6  |-  dom  f  e.  _V
52, 4eqeltrrdi 2285 . . . . 5  |-  ( f  Fn  A  ->  A  e.  _V )
61, 5syl 14 . . . 4  |-  ( f  e.  X_ x  e.  A  B  ->  A  e.  _V )
76exlimiv 1609 . . 3  |-  ( E. f  f  e.  X_ x  e.  A  B  ->  A  e.  _V )
87con3i 633 . 2  |-  ( -.  A  e.  _V  ->  -. 
E. f  f  e.  X_ x  e.  A  B )
9 notm0 3468 . 2  |-  ( -. 
E. f  f  e.  X_ x  e.  A  B 
<-> 
X_ x  e.  A  B  =  (/) )
108, 9sylib 122 1  |-  ( -.  A  e.  _V  ->  X_ x  e.  A  B  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760   (/)c0 3447   dom cdm 4660    Fn wfn 5250   X_cixp 6754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ixp 6755
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator