ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpprc Unicode version

Theorem ixpprc 6721
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain  A, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpprc  |-  ( -.  A  e.  _V  ->  X_ x  e.  A  B  =  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem ixpprc
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ixpfn 6706 . . . . 5  |-  ( f  e.  X_ x  e.  A  B  ->  f  Fn  A
)
2 fndm 5317 . . . . . 6  |-  ( f  Fn  A  ->  dom  f  =  A )
3 vex 2742 . . . . . . 7  |-  f  e. 
_V
43dmex 4895 . . . . . 6  |-  dom  f  e.  _V
52, 4eqeltrrdi 2269 . . . . 5  |-  ( f  Fn  A  ->  A  e.  _V )
61, 5syl 14 . . . 4  |-  ( f  e.  X_ x  e.  A  B  ->  A  e.  _V )
76exlimiv 1598 . . 3  |-  ( E. f  f  e.  X_ x  e.  A  B  ->  A  e.  _V )
87con3i 632 . 2  |-  ( -.  A  e.  _V  ->  -. 
E. f  f  e.  X_ x  e.  A  B )
9 notm0 3445 . 2  |-  ( -. 
E. f  f  e.  X_ x  e.  A  B 
<-> 
X_ x  e.  A  B  =  (/) )
108, 9sylib 122 1  |-  ( -.  A  e.  _V  ->  X_ x  e.  A  B  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2739   (/)c0 3424   dom cdm 4628    Fn wfn 5213   X_cixp 6700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ixp 6701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator