ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpssmap2g Unicode version

Theorem ixpssmap2g 6872
Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 6873 avoids ax-coll 4198. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
ixpssmap2g  |-  ( U_ x  e.  A  B  e.  V  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem ixpssmap2g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ixpf 6865 . . . . 5  |-  ( f  e.  X_ x  e.  A  B  ->  f : A --> U_ x  e.  A  B
)
21adantl 277 . . . 4  |-  ( (
U_ x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  -> 
f : A --> U_ x  e.  A  B )
3 ixpfn 6849 . . . . . 6  |-  ( f  e.  X_ x  e.  A  B  ->  f  Fn  A
)
4 fndm 5419 . . . . . . 7  |-  ( f  Fn  A  ->  dom  f  =  A )
5 vex 2802 . . . . . . . 8  |-  f  e. 
_V
65dmex 4990 . . . . . . 7  |-  dom  f  e.  _V
74, 6eqeltrrdi 2321 . . . . . 6  |-  ( f  Fn  A  ->  A  e.  _V )
83, 7syl 14 . . . . 5  |-  ( f  e.  X_ x  e.  A  B  ->  A  e.  _V )
9 elmapg 6806 . . . . 5  |-  ( (
U_ x  e.  A  B  e.  V  /\  A  e.  _V )  ->  ( f  e.  (
U_ x  e.  A  B  ^m  A )  <->  f : A
--> U_ x  e.  A  B ) )
108, 9sylan2 286 . . . 4  |-  ( (
U_ x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  -> 
( f  e.  (
U_ x  e.  A  B  ^m  A )  <->  f : A
--> U_ x  e.  A  B ) )
112, 10mpbird 167 . . 3  |-  ( (
U_ x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  -> 
f  e.  ( U_ x  e.  A  B  ^m  A ) )
1211ex 115 . 2  |-  ( U_ x  e.  A  B  e.  V  ->  ( f  e.  X_ x  e.  A  B  ->  f  e.  (
U_ x  e.  A  B  ^m  A ) ) )
1312ssrdv 3230 1  |-  ( U_ x  e.  A  B  e.  V  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   _Vcvv 2799    C_ wss 3197   U_ciun 3964   dom cdm 4718    Fn wfn 5312   -->wf 5313  (class class class)co 6000    ^m cmap 6793   X_cixp 6843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-map 6795  df-ixp 6844
This theorem is referenced by:  ixpssmapg  6873  prdsval  13301
  Copyright terms: Public domain W3C validator