ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpssmap2g Unicode version

Theorem ixpssmap2g 6705
Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 6706 avoids ax-coll 4104. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
ixpssmap2g  |-  ( U_ x  e.  A  B  e.  V  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem ixpssmap2g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ixpf 6698 . . . . 5  |-  ( f  e.  X_ x  e.  A  B  ->  f : A --> U_ x  e.  A  B
)
21adantl 275 . . . 4  |-  ( (
U_ x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  -> 
f : A --> U_ x  e.  A  B )
3 ixpfn 6682 . . . . . 6  |-  ( f  e.  X_ x  e.  A  B  ->  f  Fn  A
)
4 fndm 5297 . . . . . . 7  |-  ( f  Fn  A  ->  dom  f  =  A )
5 vex 2733 . . . . . . . 8  |-  f  e. 
_V
65dmex 4877 . . . . . . 7  |-  dom  f  e.  _V
74, 6eqeltrrdi 2262 . . . . . 6  |-  ( f  Fn  A  ->  A  e.  _V )
83, 7syl 14 . . . . 5  |-  ( f  e.  X_ x  e.  A  B  ->  A  e.  _V )
9 elmapg 6639 . . . . 5  |-  ( (
U_ x  e.  A  B  e.  V  /\  A  e.  _V )  ->  ( f  e.  (
U_ x  e.  A  B  ^m  A )  <->  f : A
--> U_ x  e.  A  B ) )
108, 9sylan2 284 . . . 4  |-  ( (
U_ x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  -> 
( f  e.  (
U_ x  e.  A  B  ^m  A )  <->  f : A
--> U_ x  e.  A  B ) )
112, 10mpbird 166 . . 3  |-  ( (
U_ x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  -> 
f  e.  ( U_ x  e.  A  B  ^m  A ) )
1211ex 114 . 2  |-  ( U_ x  e.  A  B  e.  V  ->  ( f  e.  X_ x  e.  A  B  ->  f  e.  (
U_ x  e.  A  B  ^m  A ) ) )
1312ssrdv 3153 1  |-  ( U_ x  e.  A  B  e.  V  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2141   _Vcvv 2730    C_ wss 3121   U_ciun 3873   dom cdm 4611    Fn wfn 5193   -->wf 5194  (class class class)co 5853    ^m cmap 6626   X_cixp 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-map 6628  df-ixp 6677
This theorem is referenced by:  ixpssmapg  6706
  Copyright terms: Public domain W3C validator