ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninf2 Unicode version

Theorem nnnninf2 7064
Description: Canonical embedding of  suc  om into ℕ. (Contributed by BJ, 10-Aug-2024.)
Assertion
Ref Expression
nnnninf2  |-  ( N  e.  suc  om  ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.
)
Distinct variable group:    i, N

Proof of Theorem nnnninf2
StepHypRef Expression
1 elsuci 4363 . 2  |-  ( N  e.  suc  om  ->  ( N  e.  om  \/  N  =  om )
)
2 nnnninf 7063 . . 3  |-  ( N  e.  om  ->  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.
)
3 iftrue 3510 . . . . . . 7  |-  ( i  e.  om  ->  if ( i  e.  om ,  1o ,  (/) )  =  1o )
43eqcomd 2163 . . . . . 6  |-  ( i  e.  om  ->  1o  =  if ( i  e. 
om ,  1o ,  (/) ) )
5 eleq2 2221 . . . . . . . 8  |-  ( N  =  om  ->  (
i  e.  N  <->  i  e.  om ) )
65ifbid 3526 . . . . . . 7  |-  ( N  =  om  ->  if ( i  e.  N ,  1o ,  (/) )  =  if ( i  e. 
om ,  1o ,  (/) ) )
76eqcomd 2163 . . . . . 6  |-  ( N  =  om  ->  if ( i  e.  om ,  1o ,  (/) )  =  if ( i  e.  N ,  1o ,  (/) ) )
84, 7sylan9eqr 2212 . . . . 5  |-  ( ( N  =  om  /\  i  e.  om )  ->  1o  =  if ( i  e.  N ,  1o ,  (/) ) )
98mpteq2dva 4054 . . . 4  |-  ( N  =  om  ->  (
i  e.  om  |->  1o )  =  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
10 infnninf 7061 . . . 4  |-  ( i  e.  om  |->  1o )  e.
119, 10eqeltrrdi 2249 . . 3  |-  ( N  =  om  ->  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.
)
122, 11jaoi 706 . 2  |-  ( ( N  e.  om  \/  N  =  om )  ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.
)
131, 12syl 14 1  |-  ( N  e.  suc  om  ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    = wceq 1335    e. wcel 2128   (/)c0 3394   ifcif 3505    |-> cmpt 4025   suc csuc 4325   omcom 4548   1oc1o 6353  ℕxnninf 7057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1o 6360  df-2o 6361  df-map 6592  df-nninf 7058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator