ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninf2 Unicode version

Theorem nnnninf2 7103
Description: Canonical embedding of  suc  om into ℕ. (Contributed by BJ, 10-Aug-2024.)
Assertion
Ref Expression
nnnninf2  |-  ( N  e.  suc  om  ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.
)
Distinct variable group:    i, N

Proof of Theorem nnnninf2
StepHypRef Expression
1 elsuci 4388 . 2  |-  ( N  e.  suc  om  ->  ( N  e.  om  \/  N  =  om )
)
2 nnnninf 7102 . . 3  |-  ( N  e.  om  ->  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.
)
3 iftrue 3531 . . . . . . 7  |-  ( i  e.  om  ->  if ( i  e.  om ,  1o ,  (/) )  =  1o )
43eqcomd 2176 . . . . . 6  |-  ( i  e.  om  ->  1o  =  if ( i  e. 
om ,  1o ,  (/) ) )
5 eleq2 2234 . . . . . . . 8  |-  ( N  =  om  ->  (
i  e.  N  <->  i  e.  om ) )
65ifbid 3547 . . . . . . 7  |-  ( N  =  om  ->  if ( i  e.  N ,  1o ,  (/) )  =  if ( i  e. 
om ,  1o ,  (/) ) )
76eqcomd 2176 . . . . . 6  |-  ( N  =  om  ->  if ( i  e.  om ,  1o ,  (/) )  =  if ( i  e.  N ,  1o ,  (/) ) )
84, 7sylan9eqr 2225 . . . . 5  |-  ( ( N  =  om  /\  i  e.  om )  ->  1o  =  if ( i  e.  N ,  1o ,  (/) ) )
98mpteq2dva 4079 . . . 4  |-  ( N  =  om  ->  (
i  e.  om  |->  1o )  =  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
10 infnninf 7100 . . . 4  |-  ( i  e.  om  |->  1o )  e.
119, 10eqeltrrdi 2262 . . 3  |-  ( N  =  om  ->  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.
)
122, 11jaoi 711 . 2  |-  ( ( N  e.  om  \/  N  =  om )  ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.
)
131, 12syl 14 1  |-  ( N  e.  suc  om  ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703    = wceq 1348    e. wcel 2141   (/)c0 3414   ifcif 3526    |-> cmpt 4050   suc csuc 4350   omcom 4574   1oc1o 6388  ℕxnninf 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1o 6395  df-2o 6396  df-map 6628  df-nninf 7097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator